
00

00
Muuat

<
I

m BLE m
' Productivity Engineering in the UNIXf Environment

SimPL: A Simulator for Parallel LISP

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

DTIC
4AN051988

>
cf

I

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

fUNIX is a trademark of AT&T Bell Laboratories

DISTm^rjT.;:;; ■• -:'

DintribuHjn "•.■•'■

f

f oa

iM^KWAVWWsrriawrtw

SimPL: A Simulator for Parallel LISP

Ltsa Penninger

Computer Science Division
Electrical Engineering and Computer Science

University of Calilbrnia
Berkeley, CA 94720

June 2, 1987

Abstract

SimPL is a simulator for a multiprocessing LISP that incorporates both delayed and eager-
bcaver style evaluation; it runs on a single processor. SimPL can be used to run a variety of pro-
grams with different amounts of parallelism. The results of these simulations can be used to make
generalizations about the benefits gained from use of parallelism in certain symbolic computations,
and, given other data about process-starting time, the optimal number of processorr for this type
of computation. Some examples from symbolic mathematical computation are used to illustrate

the program.1

"Sponsored in part by the Army Research Office (grant DAAG20-85-K0070) through the Center for Pure and Ap-
plied Math and DARPA/XCS (grant 25857).

<"3^/AV>VV ;'7;vx^m«>^wxv^^

Table of Contents

1. Introduction 1

2. Description of Multilisp 3

3. Categories of Parallelism 6

•1. Placement of Parallelism 9

5. Description of SimPL 13

G. Details of Implementation 22

7. Execution of SimPL 29

8. Conclusions 44

Appendix A Sample Programs 46

Appendix B The Code 51

Accesion Fcr ^

NTIS GRA&I \J NTIS
DTIC TAB G
Unannounced Q
Justification

By ,
Di::t;ibution/

A". J!?;!!)'ii.■■■' ^OCiöS

; I Avail and ■' or
Dist ; bi dcial

M L.A

■KAr-AT^-'W"1 i VWV-'/V' r-^ 'V. 'j- : V/w^ w"-J »T I VTT.n 11,^ r \^ JVlfa^ 'VVV.r ' ^ f^f--.- '■.," r^-r'^r-iu '»r--'n»4 /' u nj« f. «rv« n * r^* i

Table of Figures

Figure 1. Sample Program 16

Figure 2. Sample Output from Simulator 17

Figure 3. Sample Output from Analyzer 20

Figure 4. Sample Output from Plot Generator 21

Figure 5. Sample Plot 22

Figure G. TAK: Number of processors in use 31

Figure 7. TAK: Run Time Vs. Number of Processors 32

Figure 8. TAK: Efficiency Vs. Number of Processors 33

Figure 9. TAK: Speedup Vs. Number of Processors 34

Figure 10. QSORT: Number of processors in use 35

Figure 11. QSORT: Run Time Vs. Number of Processors 36

Figure 12. QSORT: Efficiency Vs. Number of Processors 37

Figure 13. QSORT: Speedup Vs. Number of Processors 38

Figure M. FRPOLY: Number of processors in use 39

Figure 15. FRPOLY: Run Time Vs. Number of Processors 40

Figure 16. FRPOLY: Efficiency Vs. Number of Processors 41

Figure 17. FRPOLY: Speedup Vs. Number of Processors 42

Figure 18. TAK: Comparisons Showing Overhead 43

Figure 19. QSORT: Comparisons Showing Overhead 43

Figure 20. FRPOLY: Comparisons Showing Overhead 44

} J .1 Jm^\r-J V\ • V- ' '^IVW J^.l'rT J W-JiriJ W-VJ W _< W-^ -*fJ *'•■ 4 •- W^J^XSLUM.'.' I«-U »r-ij w ■.

SimPL: A Simulator for Parallel LISP

Lisa Penningcr

Computer Science Division
Electrical Engineering and Computer Science

University of California
Berkeley, CA 91720

1. Introduction

In spite of the great interest in speeding up programs by using parallelism, few con-

venient parallel machines are available, and those may not have the types of parallelism that

might be of most benefit. This paper describes a simulator, written in COMMON LlSP, that

provides a method for experimenting with varying amounts of explicit (programmer-specified)

parallelism, and gathering information about the efficiency of such programs if they were to

be run on a parallel processor.

The system chosen for simulation is Multilisp [7,8]. Its parallel constructs are quite sim-

ple, and rely heavily on the programmer to decide on their efiTicient and correct use. Multilisp

is explained in a later section of this paper; however, a working knowledge of some dialect of

LISP is assumed.

'V
1.1. Related Work

There is a history of partially implemented or one-of-a-kind machines and systems to

run parallel LISP. See, for example, references on Concurrent LISP [14], Butterfly LISP [13],

/vHV>vwvv//,iÄüVl«w«HMR1iCAV.'r,.1ri :T.i XA'ii^vvi v\r*-v/\Arv\rvM\ruu\rvirhruvv/\n nji [■WAAA.« rvn aÄn.A r.y n« ,-\ w/v« HWKU-R WTSW ä U r,'.. r- L * V " .. -I _ > ' ■-- iry v ■ LTüRTW L~W

SPUR Lisp [lü], Concurrent Common LISP [2] and the Bath Concurrent Lisp Machine [11].

Two models that seem to have emerged, with variants, are Q-LISP [5j and Multilisp [8].

Queue-based multiprocessing LISP, or Q-LISP [5], allows run-time specification of the

type and amount of multiprocessing done. Its parallel constructs, qlet and qlambda, have

similar syntax to let and lambda, but take an additional argument, which specifies whether

they are to execute sequentially, in parallel but waiting for values from the other arguments,

or in parallel without waiting. An interesting feature not present in other languages is the

ability to prematurely terminate a process chain and return a value. This is done through

modified versions of catch and throw, thus making this LISP useful for OR parallelism,

which is used in AI applications such as search trees. A simulator has been vritten, and the

language is currently being implemented on an Alliant multiprocessor.

The Multilisp system is discussed in more detail in a later section of this paper. It is

implemented on the 32-processor Concert system.

In spite of these systems, a simulation provides the flexibility of running programs on

un-realized architectures, although at slow speed. It is easier to change software than

hardware.

Another COMMON Lisp simulation package has been implemented by McGehearty and

Krall [12]. This package differs from SimPL in that it uses a preprocessor to insert function

calls to handle synchronization of the simulated processes, rather than a post-processor. The

synchronization handlers output timing data when the program is run. Then a post-processor

analyzes the data in the same manner as SimPL.

1.2. Outline

Section 2 discusses the categorization of various types of parallel systems. Section 3

describes Multilisp. Section 4 discusses the proper use of high-level explicit parallelism in pro-

WWOTHOTW XAViK"! X/1 K\\T ^ O '-LI m \!\JW isAKA KPaSBBSRHR KKSratfl»BOeWOSH HAMHA K!*\WWW.mjsr^\^\K\^xJ\\'s.-\'J*-*.\^ WCJWt

grams. Sertion 5 describes SimPL. Section 6 gives a detailed description of the implementa-

tion of f'mPL. Section 7 describes how to use SimPL, the programs that were run, and the

results. Section 8 summarizes the work, and explores directions for further research.

2. Description of MultiHsp

Multilisp (7,8) is a LISP dialect that is based on Scheme [l] and has been extended by

the addition of the following four parallel constructs. These constructs, which have been

adapted for use in this simulator, are the only method of introducing parallelism into Multilisp

programs. Unless the programmer explicitly specifics them, the program will execute sequen-

tially.

2.1. Delay

Delays are an implementation of the concept of lazy evaluation where the value of an

expression is not computed until it is required. Therefore, delays may be thought of as exam-

ples of demand-driven data flow programming. An expression which requires the value of a

delay is data-driven; it executes only after its arguments are available. The construct

(delay A)

returns a structure which contains all information necessary to evaluate the expression A at a

later time. Evaluation will not begin until the value of A is actually required. When this

occurs, the delay is computed on the same processor on which its value was required, since the

original process is blocked until it receives that value. Therefore, delays affect the order of

execution of the program, but do not affect parallelism.

TK/W^AT'snV V\ V/[Kn>v^HA^HA)^\^^^

2.2. Future

Futures are based on the eventual values developed for Algol 68 on the C.mmp system

[10]. The construct

(future A)

causes its parent process to be pushed onto the current processor's stack, while the current

processor begins evaluation of the expression A. The parent process may be removed from the

stack and executed by any free processor. It is able to continue execution because the future

call will immediately return a structure which acts as a placeholder. This structure contains

information about the process evaluating A, including whether its value has been computed

yet, and will eventually hold A's return value. A future which has finished evaluation is said

to be determined.

2.3. Touch

The construct

(touch A)

behaves as the identity operator, unless its argument is an undetermined future or delay, in

which case its execution is suspended until the future or delay has been determined.

2.4. Pcall

In a sequential LISP system, the arguments to a function call are evaluated in turn.

Multilisp allows the arguments to be evaluated in parallel, by use of the construct pcall.

Evaluation of the form

(pcall F A B C .. .)

results in the expressions F, A, B, C, ... being evaluated in parallel to produce the values f,

a, b, c When all have been evaluated, f (presumably a function definition) is applied to

'MWrj1 TS. 'V'-AA.'Wv" FSWVWy-i)Y >'/v.(>PjX»J5Ca V^^V>/yvW'iVU^JVV'Vy VVnA/VirSAj'V".7\^j'J\ aArWV,wr\«/Vi.-V<.nj< ru*™ %> nxrj-- n* r,.* ru(f>> njrn >-r k-r VTV i.-7ivm™ «

a, b, c, ... to compute the value of the expression.

This can be implemented by creating futures to compute each of the values, and then

touching each one to force its evaluation before the function is calltd.

2.5. Implementation

The structure that Multilisp uses to represent a future is considered a separate type. It

contains a LISP value, a task queue, a "determined" flag, and a lock. The LISP value will be

used to contain the final value of the future. The task queue is a list of all processes which

are blocked because they require the future's value. The determined flag is true if the compu-

tation of the future's value is finished. Initially the flag is false and the queue is empty.

Multilisp evaluates function calls in the same way that a sequential LISP system does,

that is, left-to-right. It checks the type of each object to see if it is a future structure. If not,

it simply returns the LISP value of the object. Otherwise, if it is a future structure, and the

future is determined, then the LISP value is returned. This value must be recursively checked

to see if it is also a future. The only case in which a process blocks waiting for the value is if

the future is undetermined and its value is required immediately. The process will then be

suspended and added to the task queue of the future. When the future finally does become

determined, these tasks will be activated.

Once a future is determined, the structure used to represent it no longer serves any pur-

pose, and the Multilisp garbage collector will substitute the value for the structure, thus elim-

inating a level of indirection.

When Multilisp evaluates an expression whose car is future, the processor will push

the original task onto its queue of waiting tasks and proceed with the evaluation of the paral-

lel construct. The original task may be picked up by any idle processor; if there are no idle

processors, then evaluation will proceed as if on a sequential system.

i.H"ji*VMU*'V TM WUfTVn'MKV nM fTW " V ^Vrt U^x* Kn H,n M nunxAxn xn H nnn Kin'W n-s*'na n HT* ^ ■,- i. mrFVMTVKJrunw n n^ntnai'nÄ nm.n i* n«ni-^i> n i. n ^ -« * n w nii n-anxrr'«

Similarly, when a processor evaluates

(pcall + A B C),

the originating processor evaluates the expression A and pushes the expression B onto the

queue associated with the processor. B will be selected for evaluation after A is finished, or

else evaluated on some other processor.

3. Categories of ParallellBm

Parallel systems can be divided into classes along several lines. These distinctions are

important to consider when choosing or implementing a parallel system; some classes are

more appropriate for certain applications, problems.

3.1. Bounds on Resources

K an unlimited number of processors were available for solving a problem, then the sys-

tem would be unbounded. In real life, this is not the case — systems have a fixed number of

processors; they are bounded. The question to consider with bounded parallelism is how to

best use the processors available, while unbounded parallelism is primarily useful for theoreti-

cal computation of the lower bound on execution time of a particular problem [15],

3.2. Complexity of System

The complexity of a system defines another class boundary. The number of instruction

streams (processors) and data streams involved are usually divided into classes of "single" and

"multiple". Those two divisions are combined to describe the system, which results in four

possible arrangements: Single Instruction-stream, Single Data-stream (SISD), Multiple

Instruction-stream, Multiple Data-stream (MIMD), Single Instruction-stream, Multiple Data-

stream (SIMD), and Multiple Instruction-stream, Single Data-stream (M1SD). A example of a

SISD system is the traditional von Neumann machine. MIMD systems are the most general

type, with multiple processors operating on multiple data objects. An array processor would

be an example of a SIMD machine, where a single program performs the same operations on

many data objects at once. MISD systems aren't generally used, but an example is a pipe-

lined architecture, where several processors operate in sequence on a stream of data, each tak-

ing as its input the previous processor's output.

3.3. Level of ParallellBm

When the primitives of a system implement the parallelism by overlapping machine

instructions presented in a sequential stream, the system is said to employ low-level parallel-

ism. An example is a pipelined CPU, where certain parts of each operation are allowed to

proceed in parallel. When the algorithm itself is specified in a parallel fashion, for example, as

the result of combining several distinct processing streams with occasional interlocks, then

high-level parallelism is being used. Multilisp is an example of the use of yet higher-level

parallelism, although the programmer still must specify where the parallelism can occur, the

precise ordering of processing and interlocks may not be specified.

3.4. Strategy for Problem Solving

In AND parallelism, the problem to be solved is divided into several tasks executed in

parallel, and all results are required for completion. An example is computing the arguments

to an addition function in parallel, since both of the values are required for the addition to

finish.

In OR parallelism, only one of the tasks must be completed. The other processes may

then be terminated. An example is searching the branches of a game tree in parallel. If one

of the branches shows a win, then it is not necessary to finish searching the others. Tasks

which pursue alternative strategies in this way are called colluding processes [9], Unlike AND

:X-.\XAHA>'VK HLW rt W " h R UAwr K 1 W « vr wn Wf- v " tf w y ^ VT w ^ w nt.-n ±-y. v >i 'jw V- * v* v - V ■• v™ VT vr« f-r t-Tr i-r^t™ (*Twt*7--.v>'w>_'-w-.f-»T—\

8

parallelism, OR parallelism is also useful on sequential multitasking systems, as the overhead

of scheduling processes can be offset by the time saved if one process finishes much sooner

than the others.

3.5. Flow of Control

Traditional von Neumann programs consist of a scries of instructions which execute in

the order specified by the programmer. However, another model exists, called data flow com-

putation A data flow program consists of a group of instructions whose order of execution is

determined by the interdependencies of the data they operate on. There are two divisions of

data flow programs: data-driven and demand-driven. A data-driven instruction will execute

when its operands are ready; a demand-driven instruction will execute when its result is

required.

3.6. Method of Communication

Two methods of communication between processes are the use of shared memory with

monitors and message-passing. A monitor is a data structure or a collection of structures

together with routines to modify it, e. g. a queue with pop and push routines. Message-

passing involves sending copies of data objects to other processors in order to communicate.

This may be done with blocking, i. e. when a process sends a message it blocks until the reci-

pient is ready to receive it, or with buffers or queues, so that a process may send its message

and go on with other computation without waiting. Several issues must be considered when

designing this type of system:

(1) Do processes automatically block when sending or receiving messages, or is there some

other method of synchronization?

(2) How do processes know how to contact others they wish to communicate with?

VJVJireW '-^ <\A I-.^jre^-..- r\ n i sj. -"J -- I --./-•■•_-. f'-«■^-n^. r_n r^- IV n^in-^ r-ff r^r .'\J\n-P. , Ji.pj.-fv* l-JTJ.r^ l* r-r r^r r j. r„*«wcc_j. r j. r.a r. j. r. * ;

(3) What is the formr.t of a message?

(■1) How are communications failures handled?

3.7. Type cf Symmetry

Typical programs use subroutines, in which the caller must know the name of the callee,

but the callee does not know which routine has called it. This is a hierarchical, or asym-

metric transfer of control. An example of symmetric transfer would be a program which used

coroutines [3]. Coroutines are like subroutines, except that they do not simply return to the

next instruction in the calling procedure. They pass control to each other always by name,

and may have many entry and exit points.

In a parallel environment, the caller of a subroutine may possibly go on executing

without waiting for the return value. A synchronization point occurs when it reaches a point

where it cannot continue without that value. Coroutines can also be extended to work in the

parallel world; a coroutine may execute until it requires some kind of communication with

some other routine. At that point, either the other routine is ready and waiting for communi-

cation, or the first routine may have to wait until the other routine also reaches the point

where it is ready to communicate. After that point, they may both continue.

4. Placement of Parallelism

In some parallel systems, the parallelism is implemented transparently by the hardware

and/or software (implicit parallelism). In others, the programmer must specify in the pro-

gram itself which operations may be done in parallel (explicit parallelism). Still others use a

combination of the two.

KfJ'J-fJ'jrj.rs'S.rsrsssiS V.;. si^I •'.■ --j ■-.li-^:f J,<i,-rj ■r.yjM VA jliCiLIU.I liß^Jl '^A IIAJL-LAA «71H I V VI n 'iiSIMSa .■ r,*r.>ir. *-* *-nn *^ • ^ ■i.-u^.-iy- us.

10

Explicit parallelism can cause programmer headaches in several ways. In a shared

memory system, one must consider whether parts of the program will interfere with each

other if processed in parallel. The overhead involved in creating a new process is important;

if it exceeds the time saved by the oflloading, it is better to execute the computation in-line

on the same processor. Another consideration is how soon the result will be needed. If it is

required by the originating process immediately, then the originating process will be blocked

until the result is received. The task could have been computed on the original processor with

two benefits: saving the overhead of sending the task to some other processor, and freeing the

second processor for other work.

4.1. Definition of Concepts

Three properties are useful for determining where to use parallelism for maximum

speedup. A function is strict if the values of its arguments are required for its computation.

An expresion is quick (as defined by Gray [G]), if it would take less time to evaluate an expres-

sion than to create another process to evaluate it. This is implementation-dependent, but a

workable definition is to assume that all primitives are quick, and any combination of primi-

tives is also quick. Quickness is determined relative to a context, which is the set of variables

whose values are known to be available at that point. A function call is immediately strict if

the portion of code it executes before it requires an argument it is strict with respect to is

quick. This property is also determined relative to a context. Following are the formal

definitions for these terms.

4.1.1. StrictnesB

A function is strict with respect to its j'th argument if it requires the value of that argu-

ment for computation. For instance, cons is not strict with respect to either of its argu-

ments, since it only needs to know where the values will be scored, and not what they are.

yjjjyj^^^^AiiÄ^i'ÄViviiV^^

11

The COMMON LlSP primitive + is strict with respect to all its arguments. It must have all

the values to be able to return a result. The function set is strict with respect to only its

first argument. It must know which symbol to assign the value to, but it need know only the

address of the value.

4.1.2. Quickness

Cray |0] defines quickness in the following way:

Civen a context <c>, an expression is quick in <c> if it is one of the following:

(1) a self-evaluating expression, such as a string or number

(2) quoted expression

(3) simple variable

(4) (f a . . . a) where f is either a primitive LISP operator or defined by

(defun f (Vj ... vn) E) or

(lambda (Vj ... vn) E)

where E is quick in <c> and for each a one of the following is true:

(a) if a is a variable, then either

(i) the value of a is available in <c>, or

(ii) E is not strict with respect to v .

(b) no parallel constructs appear in a (or its subexpressions) and a is quick in <c>,

or

(c) f is not strict with respect to its j'th argument (in other words, f is a constructor)

and either

cö/^^rawc4\vc^-r^^

12

(i) a is quick in <c>, or

(ii) a is a parallel construct which does not require a wait.

(5) (if P Ej E2) where P, Ej, and E2 are quick in <c>.

(6) (lambda (v1 ... v^ E)

As an example, (car x) is quick in the context <x> (meaning that the value of x is

known to have been computed), but not in the contexts <>, <y>, etc. The primitive cons is

quick in any context.

4.1.3. Immediate Strictness

A function is immediately strict with respect to its jth argument if it requires the value

of that argument for computation, but the portion of the function code preceding the point of

that requirement is quick. For example, the COMMON LlSP primitive + may take several

arguments, all of which are required to produce an answer. However, the hardware can add

only two of the arguments at once, so there is a small delay before some of the arguments are

needed. The + function is still considered immediately strict with respect to all arguments,

because the computation done before these values are required is quick, since it involves only

LISP primitives. An example of a function which is strict with respect to all its arguments,

but not immediately strict, is the following:

(defun fund (x y)
(if (null x) (car y) (cdr y)))

This is immediately strict with respect to x, since its value is tested as the first action of the

function. It is not immediately strict with respect to y, because it is not known how long the

function will have to wait for the value of x if the value of x is being computed elsewhere.

K/vvi>ur'^jvH^:^Kn^/\K"M)<i\)iv.T^v\>uV^

13

4.2. Application of Concepts

Gray's basic idea of future placement is to place them only around the arguments to

function calls, and only in the following cases:

(1) If the function is immediately strict with respect to its t'th argument and there exists a

later (further to the right) argument that is not quick in the current context, then

enclose the ith argument in a future. This allows concurrent evaluation of required

arguments.

(2) If the function is not immediately strict with respect to its t'th argument, enclose it in

a future. This allows evaluation of arguments concurrently with their use.

5. Description of ShnPL

SimPL includes the same four constructs (future, delay, pcall, and touch) as Multilisp.

It is implemented in COMMON LISP, and thus allows use of all its functions as well. Although

SimPL is compiled, the user program must be run interpreted, for reasons explained in section

6.

5.1. Delay

The construct

(delay A)

returns a generated symbol whose value is a structure which contains all information neces-

sary to evaluate the expression A at a later time. This symbol has 'delay set to t on its

property list. Evaluation of A will not begin until its value is actually required. Once this

happens, the structure will be replaced by the value.

A.v.Vi.>ttm>:uv.*7'>!rxr>r.*r.^/AW>r

14

To guarantee consistent results between SimPL and a real multiprocessor system, if A is

a function call, it should be a true function. That is, its value can be computed based solely

on its arguments. Although closures save all variable bindings which are lexically visible at

the time the closure is created, the values of these variables can be still be changed. Those

local to the delay will not be affected by the rest of the program, but global variables may.

The programmer should be aware of the possibility that the time at which a delay is

evaluated could affect its result value.

5.2. Future

The construct

(future A)

causes the expression A to be evaluated, and outputs information about timing. It returns a

generated symbol whose value is the result of the evaluation and which has 'future set to t

on its property list. The reason behind returning a symbol as a level of indirection is so that

the simulator will be able to keep track of when a future's result is demanded. This indirec-

tion is not visible to the user program.

5.3. Touch

The construct

(touch A)

behaves as the identity operator, unless its argument is a future symbol, in which case it

returns the future's result, or a delay symbol, in which case it computes the delay if undeter-

mined, or returns its result if determined.

. ^ HA >C> H/i H-T '<J\ K^ krt -U^ VLX V..T>< ^T-Ln V/TK WK *Vi »rw W X'-i fVX-ü fyltmn^ }CÄ K-J Kl TU K".' >ri H y M-.' >r J H- J ■■OJ :fv .vu w Haneu -J-J KV V J :<M y- j w ■<-..■ -^j ws-j >r. i vu -r .■ v

15

5.4. Pcall

The construct

(pcall FAB)

is implemented as

(apply (touch (future F)) (touch (future A)) (touch (future B)))

5.5. Implementation

The SimPL systems is intended to simulate the functioning of the above constructs on a

multiprocessor system, but is actually run on a single processor. It outputs timing informa-

tion about the "processes" created, from which the user may draw conclusions about the mul-

tiprocessing efficiency of the program simulated.

The system is implemented in three phases: the simulation, the analysis, and the output

of plot data. Each phase requires complete output from the preceding one. Intermediate

states are stored in files, and therefore the simulation need be run only once. Then the

analysis and output phases may be repeated for each processor configuration desired.

5.5.1. Simulation Phase

The simulator takes an expression to be evaluated. It evaluates the expression sequen-

tially, logging each occurrence of a future as if it were a separate process. It outputs the start

and end time of each "process", plus any intermediate times when it is blocked or restarted.

It also determines which processes would be started at the same time if an infinite number of

processors were available. If the number of processors required is greater than 99, the pro-

gram should be recompiled with a larger maximum number so as not to restrict the program's

demand for additional processors.

X/L^mA>UlX.T^T)^T)CV:^Ai^A>vr^JVKA>^

IG

Figure 1 shows a sample program, which is immediately strict with respect to both its

arguments. Therefore, both of the arguments to this program should be computed as futures,

since the program itself will block until all arguments are available. Figure 2 shows the out-

put from the simulation phase when running the sample program. Package information and

quoting of lowercase symbols has been edited out for clarity, and comments have been added.

The first line is a comment containing the original expression to be evaluated. Following lines

consist of an event number, a "process" name, an event type, and the cpu time used so far.

All events with the same event number would be initiated at the same time if unlimited pro-

cessors were available. A "-" in the event number field indicates that the timing of the event

is directly dependent on some other event. Events are matched based on the "name" field.

The names are composed of a tag (either "sim", "delay", or "future", depending on the type

of process) concatenated with a unique number. The event types are: "begin-sim" and "end-

sim", which represent the start and end of the simulation, "begin-exec" and "end-exec",

which represent the start and end of the evaluation of a future, and "value-needed", which

represents the point at which some process requires the value of the future named in the "id"

field. The last, lines arc comments showing the final result of the simulation, the number of

futures and delays created during execution, and the number of each whose values were actu-

ally required.

(defun sample (x y)
(+ x y (* x y)))

Figure 1. Sample Program

SXTJ'JJJ^ «OSJ'S .r.' ■'• \>'iXSk'Jy^äl2JS:/^J^J'JJ\FJ,^J^mJ^iAr\KriAI\^Ji^Krji/VR/VK AX AK AX AA HJf AH AX W AM AV AK \ WTLK rt V HJiT, V f, X E' Tt V)..V;H iT* \riOSDiM>: m

17

(sample (future (sample (future (* 1 2))
(future (* 3 4))))

(future (* 5 6)))

Event Name

0 slml

1

2

2

3

4

5

6

1

7

8

9

10

Typo

begln-slm

future2 be^in-exec

Time Comments

futures begin-exec
futures end-exec
future4 begin-exec
future4 end-exec

18533 executing entire expres-
sion

18516 (sample (future (* 1 2))).
parent is slml

18700 (* 1 2), parent is future2
18766 futures has completed
18816 (* 3 4), parent is future2
18883 future4 has completed

futures value-needed 18916 futureS's value needed by
future2

future4 value-needed 18950 future4,s value needed by
future2

futures value-needed 19000 futureS's value needed by
future2

future4 value-needed 19033 future4's value needed by
future2

future2 end-exec 19100 future2 has completed
futures begin-exec 19150 (* 5 6), parent is siml
futures end-exec 19183 futures has completed
future2 value-needed 19233 future2's value needed by

siml
futures value-needed 19266 futureS's value needed by

siml
future2 value-needed 19316 future2's value needed by

siml
futures value-needed 19366 futureS's value needed by

siml
siml end-sim 19416 the simulation has ended

1208
4 total futures, 0 futures computed but not needed
0 total delays, 0 delays not computed

Figure 2. Sample Output from Simulator

The events shown in Figure 2 are listed in the order they would occur in a single-

processor environment, so that is the order in which they will be discussed.

/aftn<W\'om%^;"0üOsA:^^^

The task named siml is responsible for evaluating the entire expression

(sample (future (sample (future (* 1 2))
(future (* 3 4))))

(future (* 5 6)))

It begins at time 18533. As it evaluates its arguments, it sees that the first one is

(future (sample (future (* 1 2)) (future (♦ 3 4))))

which is a future, so it creates a new task named future2 to execute

(sample (future (* 1 2)) (future (* 3 4)))

This task is assigned event number 1, since it is the first such task to be created. It begins at

18616.

This new task now evaluates its arguments, discovers that the first one is a future, and

creates another new task named futures, which begins at 18700, to evaluate

(* 1 2).

This task receives an event number of 2, since it cannot possibly occur at the same time as

the task with event number 1, which is its parent task. It finishes at 18766. The second

argument is also a future, and a new task, future4, is created to evaluate

(* 3 4)

It finishes at 18883. Next, at 18916, the value of future3 is required by its parent task,

future2. At 18950, the value of future4 is also required. The two values are required

again respectively at 19000 and 19033. Then future2 finishes, at 19100.

The original process, siml, is now ready to evaluate its second argument,

(future (* 5 6)).

This is also assigned event number I, since it occurs at the same time as the first argument

(there is no intervening computation between the creation of the future for the first argument

/^^Af^j.!^r:VVV,
J%HjV'n'/^^^

19

and this one). It begins at 19150 and finishes at 19183. Finally, the parent task slml

requires the values of its two arguments, future2 and futures, at 19233 and 19266, and

again at 19316 and 19366. It finishes at 19416.

The final result is 1208. Four futures were created during computation, and all their

values were eventually required. No delays were created.

5.5.2. Analysis Phase

This program reads data generated by the simulation phase, with the number of proces-

sors available for the simulation being specified as an argument. It constructs a tree of

processes, and outputs timing data for each event relative to its parent process. It also runs

the output phase.

5.5.2.1. Bounded Analysis

Figure 3 shows some sample output from the analysis phase. The first three fields are

the same as before, but with the addition of some new types: "value-received", which

represents the point at which a process actually receives the value of a future, "blocked",

which represents the time at which a process is blocked, either because it is waiting for a

future to be determined or because there are not enough processors and it has been pushed

onto a queue to await processing, and "restarted", which represents the time such a process is

able to continue. The cpu time field is now relative to the start time of the process in which

that event occurred. For instance, on line 2 of Figure 3, f uture2 starts 83 time units after

its parent, slml, started. The final field is a sequencing number to keep events which occur

at the same time in the proper order for the output phase.

O-A^V^LVAäTJ"!' kfJ-XVlti^y. JT" VKS«.V.>:'«;'ti.>:wXi<'HJ.KV'> i.> WT.V"»',^ y>: s/>: vr.< !.-•(LT; \.-> ux '.>■>-►. i-- i^. \.-s v.-va/v i.-»L-»v--.Lr.-v/viri.-v^.-,\rj\^ »i.-^-v..,. .. «n-i_n » r,.^,

20

Event Name Type Time Sequence

0 siml begin-sim
1 future2 begln-exec
1 futures begln-exec

futures end-exec
2 futures begin-exec
2 future4 begln-exec
7 future2 value-needed

slml blocked
futures end-exec
future4 end-exec

3 futures value-needed
futures value-received

4 future4 value-needed
future4 value-received

5 futures value-needed
futures value-received

6 future4 value-needed
future4 value-received
future2 end-exec
siml restarted
future2 value-received

8 futures value-needed
futures value-received

9 future2 value-needed
future2 value-received

10 futures value-needed
futures value-received
siml end-sim

Figure 3. Sample Output from Analyzer

0 1
83 2
83 3
116 4
167 5
167 6
183 7
183 8
233 9
234 10
250 11
250 12
284 13
284 14
334 IS
334 16
367 17
367 18
434 19
434 20
434 21
467 22
467 23
517 24
517 25
567 26
567 27
617 28

5.5.2,2. Unbounded Analysis

Unbounded analysis is currently done by preallocating "enough" processors so that no

process ever blocks for lack of a processor. For the simulations done in this paper, 99 was

enough.

^ VOVM^. i^.T »i. ^.'K-A V;"*. R^ XT >i71 H-TX-H '^.T ^C"l It-T *t/t MJ"\ >4J"1 HJ1 HJ1 tL/V«_n n.ri ?*J\Jtn «^1 «.n R_n K-M fvjn w-'A R_n R_n mjl nj-\ n-ri nj\ *-n r^j\n^-yr^r\ *-'\ -ji T*J\

21

5.5.3. Output Phase

The third stage reads the previous results and produces plotting data. Figure 4 shows

some sample output from the plot output phase. Each line consists of an x value (cpu time)

and a y value (number of processors in use). At the end of the plotting output, a comment

section gives the maximum number of processors that were in use at one time, the grand total

of processor time used over all processors, the "reserved" processor time (the maximum

number of processors multiplied by the longest execution thread), and the efficiency of the

system (the percentage of the reserved time which was actually used). Figure 5 shows a

Time Processors In Use

0 0
0 1

83 1
83 3
116 3
116 2
167 2
167 4
183 4
183 3
233 3
233 2
234 2
234 1
434 1
434 1
617 1
617 0
Maximum of 4 processors in use
Processor time used: 883
Total processor time available: 2468
Percentage used- 35.78

Figure 4. Sample Output from Plot Generator

vlV.VJ>^\V^^{;A\^V^AV/\.'W.'KVV.\''n^rK\i>: Vr:,y±y^smwxTX r-y/w ArwWwWx' fymmtvi MMvnsim m xv ^-y jyy WJ rfvw wrfvwwwvi

22

sample plot.

0. Details of Implementation

The following sections give an outline of how SimPL works, some design decisions which

were made alonp, the way, and some problems with the current implementation.

6.1. Program Outline

Here is a description of the three phases of SimPL.

4T

P
r 3 1
o
c
e
s
s 2
o
r
s

i 1
n

U
s
e 0-t

0
-i 1-
300 400

Time

100 200 300 600 700

Figure 5. Sample Plot

iAäJViJ'Ji/\ji^Jf^JiX^\^\r^\^\yj\J^'i^"JLri^'\Jn^ \AJ-U!S\.'J\t.'W:\rJ\r..'\r.' ••.ruviJVin.-WliWi'vjs. LfVuv-uv-\jwuvrLjv\jv-vA.'-ij!ji/irvÄrLfuuvfi«.-Lnri_ni

23

6.1.1. Simulator

The LISP simulator evaluates the form given it, removes all indirection resulting from

future and delay structures, and then returns and prints this "cleaned-up" result.

Since futures and delays look like function calls in the program, one might think that

they could actually be implemented that way. Normal LISP evaluation cannot be used; if

future were a function call, its argument expression would be evaluated before the the future

function were entered, and all chance to time the expression is gone. For example, in the

expression

(future (+ 1 2))

the future function would receive the integer 3 rather than (+ 1 2). Treating delays as

function calls does not work either. Por example, delays can be usrd to implement streams:

(defun integers (i)
(cons i (delay (integers (+ i 1)))))

This will return a stream of all integers starting with i, but will only calculate the ones which

are needed. In this case, fully evaluating the argument to a delay would lead to a non-

terminating calculation.

Another problem is that when a future or delay is begun, it returns a symbol that will

eventually point to the result. This level of indirection remains throughout the simulation,

and thus whenever an object is evaluated it must be checked to see if it is a future or delay.

The user program should not be affected by this indirection.

Both of these problems are solved by taking control of the evaluation process away from

the LISP evaluator. In COMMON LlSP it is possible for the user-written program to gain con-

trol of the evaluation process through two hooks in the interpreter: evalhook, which controls

execution of interpreted code, and applyhook, which controls execution of compiled code.

A «TT/Vv -f, KA H/\ X-T M KA W yj\ W. HA M KJl H/l)V1 *J\ «ÄVVv^TAA AA ATJ-W-UVVVX w-i ^w v/v WWW'/v V, • W L'v u-v \.v w \rx srama"; vv mur Mnj-.r^rj-- nJWWW

21

When eval is called on a form and the value of the symbol +evalhoolc* is non-nil,

then *evalhook* and *applyhook* are temporarily set to nil, and control is passed to the

function named by the former value of *evalhook*. This function is responsible for evaluat-

ing the form and returning its value, and will usually call evalhook to do this.

Applyhoolc works in much the same way, except that the function named by its value

will receive a function and a set of already evaluated arguments. However, since applyhook

operates on compiled code, it will (depending on the implementation) not be called to evaluate

certain special forms, such as car and cdr. This means that, in compiled code, there is no

way to check the argument to one of these functions to see if it is a future. Therefore, the

programs run under the simulator must be interpreted, resulting in eonsidefäble loss of speed.

The simulator itself can be compiled, and is.

The simulator decides what processes would be started at the same time if infinite pro-

cessors were available, and assigns event numbers to these processes accordingly. Each future

or delay at the same level in an expression is assigned the same event number, unless there is

an intervening normal expression, in which case the event number must be incremented. It is

also incremented whenever the first future at a level is encountered. For instance, in the

expression

(+ (future A) (future B) (* 1 2) (future C))

the first two futures would be considered to have starred at essentially the same time, but the

third would start later because of the intervening multiplication. This is done by keeping

track of the depth inside an expression, and the type (future or non-future) of the last expres-

sion evaluated at that depth.

During evaluation of the arguments to a function call, if a future or delay is encoun-

tered, it is necessary to know whether the function can proceed without its value (whether the

function is immediately strict). The simulator knows which COMMON LISP built-in functions

.TtvA;-.V".'. > -r-':- /tVT^TJ/KVxyrA^vx^^'y v?(v>'\rat-;iv^v^v^

25

are immediately strict only through the fact that this information has been hard-coded into

the simulator itself. At load time, a series of commands are executed which add the atom

strict to the property list of the name of each strict function. Functions which are not

assigned this property are assumed to be non-strict. This causes the program to take longer

to load, but it need be done only once and speeds program execution greatly by making the

test for strictness (which must be done every time a function is called) fast. The choice was

made to indicate strictness rather than nonstrictness, which results in all user functions being

nonstrict by default. This is correct, since they are composed of LISP functions, which may

or may not be strict themselves.

6.1.2. Analyzer

The analyzer works by building a tree of "process" structures. Each structure contains

information about the process start and end time, the amount of time it has spent in a

blocked state, its child processes, etc. An array of "processor" structures is also created. The

analysis is begun by placing the simulation "process" into a "processor". Then the next event

in the life of each process which is currently "running" is collected, and the one which would

occur first is proccFsed. This could involve creation of a new process or blockage or ending of

an old one. The next events are collected and processed again until all are done.

6.1.3. Output

The output phase indicates the efTiciency of the simulated system. It sums the processor

time used by all the difTerent processes and divides by the total reserved processor time — the

time taken by the longest thread of execution multiplied by the number of processors in the

system. If the analysis is for an unbounded number of processors, then the maximum number

of processors actually used at least once is taken to be the number reserved. For a single pro-

cessor, efficiency will always be 100 percent, since the processor is constantly in use

; V- V J VWJ W«'. W -T " HTXä VU ,V.rwwj yj'y..'v JVW said A: ^ "^J'^J .rxvv^"jv JV\JVST^"./\JVv\Ar^j^^ JTJLTJI rv« rj-. ;AJI rv

26

throughout execution. For multiple processors, some may be used for only a very short time.

Such a processor could be left idle for the whole run-time by suffering a small delay while

waiting on an already busy one. The cost of using a full processor to avoid this delay may

not be realistic if many independent job streams are available to keep processors busy (as in a

time-shared environment).

6.2. Design Decisions

6.2.1. Methods for Simulation

Two methods were considered:

(1) Simulate multiprocessors by spawning subprocesses. A shared program or file would

be needed to keep track of the process queue and the number of idle processors.

(2) Execute each "process" sequentially, keeping track of the start and stop times.

The first method has the advantage of being easier to implement and observe, but the

overhead of forking new LISP processes on UNIX and the requirement of sufficient swap space

is too high. Also, the requirement for shared memory would probably necessitate the use of a

disk file and a locking mechanism, which would further slow things down. Lastly, there is a

problem of how to return a LISP object created in a child process to the parent.

The second method has the advantage of speed, smaller execution size, and simplicity.

The disadvantage lies in trying to keep track of which processes would be running con-

currently on a multiprocessor. However, the advantages of this mttiiod seem to outweigh this

problem, so this is the method chosen.

6.2.2. Scheduling of Futures

Several methods were considered for scheduling the evaluation of futures:

j •ryyjw"j.-r. rj -r,**■•<J -r. <-. ir.JtHLX: K-KK* • iH"K,i x/v« ■, .:ai<n*.T».TH.T A^K^^nnjiA.TrwrWLrw\r»v!/vv.rwi/T< ir* v-.-

27

(1) Immediate evaluation. When a future is encountered, evaluate it right away and store

its value. Log all pertinent information about timing. This method has the advantage

of being the simplest to implement.

(2) Delayed evaluation. When a future is encountered, treat it as a delay. When its value

is required, evaluate it and log all pertinent information about timing. This method

has the advantage of not having to compute futures whose values are never needed.

However, this does not fit with the definition of Multiiisp futures, which says that their

computation begins as soon as there is an available processor, whether the value is

required or not.

(3) Stack evaluation. Push each future on a stack in order, and when one is needed, com-

pute all older (or newer) ones before it. For instance,

(F (future A) (future B) (future C) (future D))

would push A, B, C, and D onto the stack, and if the value of C was the first one

required, it would trigger the evaluation of A and B first. Future D would not be trig-

gered. This has the problem that futures which are not yet needed may be forced to

finish being calculated, thui using more resources at one time than is necessary.

I chose the method of immediate evaluation, since it is consistent with Multiiisp, and

also provides futures as a distinct construct from delays.

6.3. Problems

Following is a discussion of a few problems with SimPL.

Ö.3.I. Extra Strictness

In SirnPL, a function must be declared as strict with respect to all or none of its argu-

ments. Unfortunately, the definition of strictness applies separately to each argument to the

function. Thus, a function which is strict with respect to only some of its several arguments

niyrvX^yr^w'j^jyrj^rj ^"^i\nj\rj\nj^^i^^j\f.!\nrv\rtAr^r^r\jir^r\jir^ rvHrv>-rj>-rv>:T\VT. KTI»--!-. wTva-nk'nunvrx t K u-n KTH.'-I» «"x VK VT« vr» ^.-T« \r« irwLTi« \,nc VTH.-» t^ir-vv-w

must be declared strict, even though this will give erroneous results in some cases.

6.3.2. Extra Indirection

In Multilisp, the structure for a detfrminod future is replaced by the future's value

whenever a garbage collection is done. This was not done in SimPL, so as to be able to deter-

mine which objects are values of futures, and therefore be able to keep track of references to

them. Also, in some implementations of LISP, this is not possible, since the type of an object

is determined from its address in memory. Therefore this level of indirection must be left in

the program.

6.3.3. Memory Usage

The simulator turns off garbage collection (under those implementations of COMMON

LISP where this is possible) so as to get more consistent times. Even if it were not turned off,

the values of futures and delays are kept throughout the program, whether they are needed or

not, because these values are assigned to symbols interned in the "simpl" package. Therefore,

it is possible that a large simulation with many futures could run out of memory. The user

should take whatever measures are necessary in the particular implementation of COMMON

LISP to insure that enough dynamic memory is allocated prior to running the simulation.

6.3.4. Side Effects

Multilisp handles side effects by simply ignoring them. It is up to the programmer to

insure that either there are no side effects, or that they will not adversely affect the results of

the program. SimPL also ignores side effects, but programs which use them will perhaps show

a different result than if executed on a multiprocessor, because the simulator actually runs the

program sequentially.

fVXH.HV w\ x". w -r. •fi mi ■■r^Hv^jjfUKVx^jo.jßij^vrty

29

6.3.5. Incomplete Delays

The arguments to delays should be true functions, since the values of global variables

could change in the lime between creation of the delay and execution of it.

7. Execution of SimPL

This section includes instructions for the use of SimPL, and a description of the pro-

grams which were analyzed for this project.

7.1. InstructloiiB for Use

To prepare for simulation, change to the directory "penn/simpl on ucbarpa and execute

the following commands at the LISP interpreter:

(load "main.lisp")
(use-package 'simpl)
(load "your—program")

To run the simulator, enter an expression of the form

(sim expr [outfilc])

to the LISP interpreter, where expr is an expression which calls the program to be simulated,

and outf lie is the optional file to send the results to (this must be specified if the results are

to be analyzed). For example:

(sim (qsort '(3 1 2)))

or

(sim (qsort '(3 1 2)) results.dat)

Next, the simulator output is analyzed:

.T^tÄÜ-ityjfW^ ^-1 (^"V jfcj*. ii-T ji^ K_Aj»_n jn-AH-nji-A «-A H-TLa-A-H^I i-T ^ " ^ ~ ^J n ^ ^ w n u n ^ ^ -^ n N n K n < /i w ^ w ,\ r< -i t^\ . M w -t w ^ w ^ p .N >■ n w -t w n w -v^. -. ^-i mi ^ n i. M ^ -> «/' ru\ »wi«_rv m.

30

(analyze infile [outfile [nprocs]])

Infile should be the name of a file generated with the sim function, and outfile is the

name of an optional output lile. If it is not specified, output goes to the terminal. Nprocs is

the number of processors to use in the simulation. If it is not specified, the simulation will use

as many processors as needed (up to 99). The output of this command is a set of x-y pairs

with commented labels, suitable for input to a simple plotting program. When plotted, these

show the number of processors active at a given time.

7.2. Analysis of Programs

Futures were manually inserted into the following programs (except QSORT) according

to the method given in Gray's paper [G|. They were then run in an unbounded environment

to determine the maximum number of processors which could possibly be required. Then,

they were run in bounded environments with varying numbers of processors between 1 and

the maximum. Data from these runs were used to produce the following graphs.

All programs analyzed in this section are included in Appendix A.

7.2.1. TAK

TAK is one of the Gabriel benchmarks [4], useful mainly for testing the speed of func-

tion calls. It is used here because of its potential for exponential parallelism.

There are three futures in the program. Since TAK is immediately strict with respect to

its first two arguments, and they are followed by a non-strict, non-quick argument, futures

must be placed around each of the first two. Since TAK is not immediately strict with

respect to its last argument, the last also should be enclosed in a future.

Figure C shows the results of the analysis on a call to (tak 9 6 3). The X axis shows

the progress of time in simulation units; the Y axis shows the number of processors which

were busy during each time period.

IHA.WAVü^^VVWVVL^^

31

1'
r
o
c
p
s
s
0
r
s

i
n

U
s
e

GO

30--

40--

30--

10

J

J
n

T.

k I ^ bI^^—^

 1
SOG 1000

Time

1500 2000

Figure G. TAK: Number of processors in use

The following figures show the results of running four different invocations of TAK:

(tak 6 4 2), (tak 963), (tak 421), and (tak 752) (marked by squares, cir-

cles, triangles, and diamonds, respectively). Figure 7 shows how the run time changes with

the number of processors in the system. Note th. t it drops quite sharply over the addition of

the first 4 processors, and then levels out.

Figure 8 shows how the efficiency of the system changes with the number of processors

available. Jaggedness in the lines probably represents inconsistencies in the time statistics

gathered from running programs on a real system. The efficiency drops steadily as processors

increase, but at different rates depending on the problem.

Figure 9 shows how the speedup changes with the number of processors available. The

speedup is computed by divided the sequential run time (with futures) by the parallel run

WWJ^W.AAA/WVCV./V< ■%* ^ M^ ni. Kirw krxv^w-s VHVXUXV-HV-X, -vxwvx i-- i>\.^,'.-»i

32

T
i
m
e

20000 T

15000

10000"

5000 - -

»30 0 CO) 0 Co—O O' O' O O ;0 O
^ 1 1 1—

10 20 30 40

Number of Processors

50 CO

Figure 7. TAK: Run Time Vs. Number of Processors

-l---nT-JH\JM-L»PIT^^^ l .Tl ^-,...- , .- ,^-.:-.r.,v r v ; j/-j s; JTJ *"^ M J.J^i^J.J^_'S_£JJlj^Jir1^ir_«./^n.r\Ä/-_Aj.-_j\ '_Rn-Ä rv

33

E
f
f
i
c
i
e
n
c
y

10 20 30 40

Number of Processors

Figure 8. TAK: EfTiciency Vs. Number of Processors

v/--;-r."-fi^.v.v.'^;^;-r;' < -, < -S^J. f .^f;miX>UKX^XT*1Xrt^^^

34

10 20 30 40

Number of Processors

50

Figure 9. TAK: Speedup Vs. Number of Processors

time. This also levels out quickly, but after a higher number of processors are added, again

varying with the probiem.

7.2.2. QSORT

QSORT is an implementation of Quicksort, complete with futures, taken from

Halstead's paper [8). The program contains six futures.

wvAVv^VvV^^yvArHAKflwotir»^^

35

Figure 10 shows the results of the analysis on a quicksort of a list of 20 randomly

selected integers.

As with TAK, the following figures show four different invocations of QSORT, on lists of

20, 30, 40, and 50 randomly generated integers (marked by squares, circles, triangles, and dia-

monds, respectively). Figure 11 shows how the run time changes with the number of proces-

sors available.

Figure 12 shows how the efficiency of the system changes witli the number of processors

available. Figure 13 shows how the speedup changes with the number of processors available.

All three of these graphs show much more consistency across different levels of complexity.

QSORT is by far the most eflicient of the three programs studied here.

300 1000

Time

1500 2000

Figure 10. QSORT: Number of processors in use

C'R." ©raoooraöOößöraotsnRf« m wMnxx^mowjntmcftamB&iBnwimwHaimaaiKn HnHnHnx;iK-i*nHAM^ «LH K.nxnxAHJVAnxnHn-n»-! KT-,^« nxn^n«/!«.

36

T
i

m
e

20000

10000

10 20

Number of Processors

30

Figure 11. QSORT: Run Time Vs. Number of Processors

Ktt^AX)^WXyÜf>ijniyV^UA'WlUVliA^^)U\yJ\^ ."^ J^J^l!.t/>J\Ä.'\ "-n/-./l^lJ'./\JV.-vyv'vrui »Jl/iji.rji n^irw»

37

100

E
f
f
i
c
i
e
n
c
y

10 20

Number of Processors

30

Figure 12. QSORT: Efficiency Vs. Number of Processors

<Lij("Jifiui"\^rf^_wiij,--ijfl_jflj;»trifi;iAiAai--i. ITVÄTtAXULJ.lAJÄJir*-*' rjt/\A: -fi_'UL^_Sj:.Ji_n_ft_rji.rusrLJf /^tr^J» r k r. ■„ n h. r. ^ ■ r ■-- r 'j- ■- ^ JJVJ» a_v_ f t- r- ^ ^ l-^•■

38

10 20

Number of Processors

Figure 13. QSORT: Speedup Vs. Number of Processors

7.2.3. FRPOLY

Futures were manually inserted in FRPOLY according to the method given in Gray's

paper [6], Each function has been categorized according to its strictness or immediate strict-

ness with respect to each of its arguments. This categorization is given in the comments

before each function. Fourteen futures have been added to FRPOLY.

Figure 14 shows the results of the analysis on FRPOLY. The three diiferent invocations

of FRPOLY are: (x+y+z+1)2, (x+y+z+1)3, and (x+y+z+1)4 (marked by squares, circles,

and triangles, respectively). The expression (x+y+z+1) has already been computed before

the simulation starts.

j j<-.i>rj-.r.:v-.. --r. ><--;■/•-v.; >r r«-Y'..-.;vMW. /M V l-J*rj- i ■--. '•<-*■:-^ l-J* -*-r l\r. r^n :v- "J- -.-J" i-r i s* ,'j- ;--r* f--r.-r-irr--.fvw. i- j- i-^i

39

20 T

500

WTW

4-
1000

Time

1500 2000

Figure 14. FRPOLY: Number of processors in use

Figure 15 shows how the run time changes with the number of processors available.

Figure 16 shows how the efficiency of the system changes with the number of processors avail-

able. Figure 17 shows how the speedup changes with the number of processors available.

FRPOLY seems similar to TAK in its lack of efficiency and inconsistency. It may well be

that the test runs were not complex enough to show consistency, as suggested by the fact that

the higher-complexity runs of QSORT tended to bunch together.

7,3. Results of Tests

Usually the speedup of a parallel program is calculated by dividing the sequential run

time by the parallel run time. In the best of all possible worlds, this would be equal to N, the

number of processors in the parallel system. If colluding processes are used, the speedup could

even be greater than N.

i/J^.'^.'V;j^_v.v..>.v:-.°;/;v/-r.^---^j ■f.j^-l\' :J r^*rj'.<A<4r**jwK:..™w*jKj*i*\K'*K^*™rj.^

40

T
i

m

200000 x

150000 "-

100000

50000

0 10 20 30 40 50 GO 70 80

Number of Processors

Figure 15. FRPOLY; Run Time Vs. Number of Processors

/XU7^/(/ri'WS«E\■n»VJ^>'.,-.\/'.\ ■'^ii-rvV .-Lt KJiiHVJfVirM-ifVXV.TJjrJVJ >rJir.,"V\JirU'YU VUV^KV->^jvuv\JVUV\AAAJ*rj\i%Aa> r.Ä/\> rj- ru. •.,- - > - i- ; « njs n wnu r.

41

E
f
f
i
c
i
e
n
c
y

100-

50-

o-

\\

 \ 1 1 1 i—i—i—i

^

—i
10 20 30 40 50

Number of Processors

CO 70 80

Figure Iß. FRPOLY: Efficiency Vs. Number of Processors

,--..-.-. ^yyy^yv v. v-i w>r;>r;yj•.■r^rr* K-JyuKU)r\ i TJ fTL K. J l<:\ fMHM KM 1 iijl \U1 UA.kJI iL.! ji_K WA jijljijl J_1iLfl_HJl w .V.-.fM n\l.-\Mnv!\ li -5 iJCMJI

30 T

S
P
e
e ^0
d
u
P

10--

10 20 30 40 30

Number of Processors

60

i

^■^T "¥

/
£\ r\f\ r\ r\ f\ j^i e^^

&■

i i i f
■' 1 1 i 1 I 1 1 i

70

Figure 17. FRPOLY: Speedup Vs. Number of Processors

80

Comparing the run time of a program in a multiprocessing environment with the run

time of the same program in a uniprocessing environment certainly is useful in describing per-

formance gain. However, it does not give any information about why the speedup occurred:

some speedup was gained through parallel computation, and some lost through scheduling and

process creation overhead. In order to get this information, one must do two comparisons:

(1) The run time in a uniprocessing environment against the run time in a multiprocessing

environment which happens to have only one processor.

(2) The run time in a multiprocessing environment with one processor against that in an

environment with N processors. The first comparison gives an approximation of the

iv^\N:\^\v\\v.vvi.AVLra'v\'j.-.v/i'A^Av:ivvr<vi<
rv-ri wwwuvi/wvrwvvwuywt/

43

scheduling overhead. It will probably be too high, since naturally processes will block

more often with fewer processors. The second gives the speedup due to use of parallel

computation.

Figures 18, 19, and 20 show the overhead comparisons. The first line of data shows the

run times for various tests in the uniprocessor environment, i. e., the programs were run under

SimPL without any futures added. The second line shows the run times for the same pro-

grams, but with futures added. The simulator is limited to one processor. A comparison of

these two lines shows the overhead associated with adding futures to a program, without any

parallel processing. The third line shows the run times for the programs with futures on an

unbounded system. These numbers also happen to be the endpoints of the speedup graphs

Environment Program: tak

Futures # Processors 6 4 2 9 6 3 4 2 1

0 1 740 3300 100

3 1 3020 16380 380

3 a 620 1100 180

Figure 18. TAK: Comparisons Showing Overhead

Environment Program: qsort

Futures # Processors 20 items 30 items 40 items

0 1 2540 5420 6920

6 1 16920 39040 51660

5 CD 1880 3100 3780

Figure 19. QSORT: Comparisons Showing Overhead

Vm-w'VVfVgfrV-:-,;-:/; /:.'. IAI titurCW'TSWyWI* kvvvv^^vJJAimj"^,>w'-,ir-'-j'v<uriAriArj

41

Environment Program: frpoly

Futures # Processors (x+y+z+1)2 (x+y+z+1)3 (x+y+z+l)"

0 1 4000 14000 31860

14 1 10940 45900 125420

14 00 1700 3920 5380

Figure 'JO. FRPOLY: Comparisons Showing Overhead

shown previously.

The overhead oi futures is quite large, but the programs still show speedup in spite oC

this.

8. ConcluBlons

8.1. Directions for Further Work

The overhead involved in scheduling processes, creating futures and delays, and checking

their values is not monitored by SimPL. The insertion of more calls to a timing function in

the evaluation hook function is necessary — the time should be recorded every time the simu-

lator changes from executing SimPL code to user code.

The interaction between processes using the same global data structures is not simu-

lated, since the simulation is really run sequentially. "Locks" could probably be implemented

in much the same way as other events in the system.

Functions must be declared strict with respect to all or none of their arguments; no

allowance is made for functions which are strict with respect to only some of their arguments.

This can cause the value of a future or delay to be demanded prematurely if it is passed as an

i<.v%:v>:>>jiii«:>j:^r^r>r^jv,jvüvuvva^i v, i Si icv X"; KJ *r\i >rd H"J KM H\: VM WVW VA: WWV v^w;v/v; WVWWUI .'v\ i\«;vn r-r. \A HJI rj-, a« iv>i rvÄBjers.

45

argument to a partially strict function. A simple fix would be to change the value of the

atom strict on the function name's property list to be a list of numbers indicating the argu-

ments it is strict with respect to.

Multiple values should be handled. Currently the hook function works only on functions

which return single values. All but the first of multiple values will be discarded.

This system would be greatly improved if it were made a part of the LISP system rather

than riding atop it. It would run faster, and the indirection in accessing the values of futures

and delays could be eliminated after they had finished evaluation.

The 99 processor limit is imposed because the "processors" are stored in an array. This

limit could be eliminated by using COMMON LISP adjustable arrays, or even a list, to store the

processors. When all were busy, and another was requested, it could be easily created and

added to the system.

8.2. Summary of Results

The programs run for this project each use a different mix of symbolic and numerical

computing. However, the results for all indicate that the possibilities for speedup with parallel

execution are indeed limited, but vary with the problem under consideration. The leveling off

of both speedup and efficiency in larger systems shows that the maximum benefit can be

achieved without using excessively large systems. The use of simulation to determine this

maximum before purchasing such a system would be wise.

^-.nX-lKTi-.A^.T^.Tri 1 H ::M I ■■• I ti nuM. ff unv .nv^-j n'--)i vir»\j ■r-'wvi^.i»M ■r\:\r.i f~um-'»-.i T-I K-.i M-M w-w»-%: v. i W-,/WT w^i»- r»

APPENDIX A

Sample Programs

A.l. TAK

;;; Based on TAK in
;;; Gabriel, "Performance and Evaluation of Lisp Systems" [4]

(use-package 'simpl)

; Immediately strict in x and y.
(defun tak (x y z)

(if (not (< y x))
z
(tak (future (tak (1- x) y z))

(future (tak (1- y) z x))
(future (tak (1- z) x y)))))

A.2. QSORT

;;; Based on Halstead's qsort in
;;; Halstead, "Multilisp: A Language for Concurrent
;;; Symbolic Computation" [8]

(use-package 'simpl)

(defun qsort (1)
(qs 1 nil))

(defun qs (1 rest)
(if (null 1)

rest
(let ((parts (partition (car 1) (cdr 1))))
(qs (car parts)

(future (cons (car 1) (qs (cdr parts) rest)))))))

(defun partition (elt 1st)
(if (null 1st)

(cons nil nil)
(let ((cdrparts (future (partition elt (cdr 1st)))))
(if (> elt (car 1st))

(cons (cons (car 1st)
(future (car cdrparts)))

•16

^>W^lYvttVvVl\\Vl^^^

47

(future (cdr cdrparts)))
(cons (future (car cdrparts))

(cons (car 1st)
(future (cdr cdrparts))))))))

A.3. FRPOLY

;;; Based on Fateman's FRPOLY in
;;; Gabriel, "Performance and Evaluation of Lisp Systems" [4]

(use-package 'simpl)

Checks to see if its argument is zero.
pzerop is quick in <x>, and immediately strict
with respect to x.

(defmacro pzerop (x)
•(let ((x ,x))

(if (numberp x)
(zerop x)))) ;true for 0 or 0.0

polynomial representation looks like (var (exp . coef) (exp . coef) ...)
where the exp's [exponents] are in descending order, no zero coefs are
allowed, and a form (x (0 . 5)) [i.e. 5*x"0, or 5] is reduced to 5.
Coefs can be (recursively) polynomials in other variables.

Adds an exponent-coefficient pair to a coefficient list x.
pcoefadd is immediately strict with respect to its
second argument, c, but not strict with respect to e
and x. It is quick in <c>.

(defun pcoefadd (e c x)
(if (pzerop c)

x
(cons (cons e c) x)))

Add a constant c to a polynomial p.
pcplus is immediately strict with respect to p,
and strict with respect to c. It is not quick,

(defun pcplus (c p)
(if (atom p)

(+ p c)
(psimp (car p) (pcplusl c (cdr p)))))

Adds a constant c to a coefficient list x.
pcplusl is immediately strict with respect to x,
and strict with respect to c. It is not quick,

(defun pcplusl (c x)
(cond ((null x)

(if (pzerop c)
nil

ift.^T)-A'-.l :vl •LT/vVt'JVl^LKlAAJ^^ NT

11

48

(cons (cons 0 c) nil)))
((pzerop (caar x))
(pcoefadd 0 (pplus c (cdar x)) nil))

(t
(cons (cons (caar x) (cdar x)) (future (pcplusl c (cdr x)))))))

Multiply a constant c by a polynomial p.
pctimes is immediately strict with respect to p,
but not strict with respect to c. It is not quick,

(defun pctimes (c p)
(if (atom p)

(* c p)
(psimp (car p) (pctimesl c (cdr p)))))

Multiply a constant c by a coefficient list x.
pctimesl is immediately strict with respect to x,
but not strict with respect to c. It is not quick,

(defun pctimesl (c x)
(if (null x)

nil
(pcoefadd (future (caar x))

(future (ptimes c (cdar x)))
(future (pctimesl c (cdr x))))))

Add two polynomials x and y
pplus is immediately strict with respect to x,
and strict with respect to y. It is not quick,

(defun pplus (x y)
(cond ((atom x) (pcplus x y)) ; is x a constant?

((atom y) (pcplus y x)) ; is y a constant?
((eq (car x) (car y))
(psimp (car x) (pplusl (cdr y) (cdr x))))

((> (get (car x) 'order) (get (car y) 'order))
(psimp (car x; (pcplusl y (cdr x))))

(t (psimp (car y) (pcplusl x (cdr y))))))

Add two coefficient lists
pplusl is immediately strict with respect to x, but
not strict with respect to y. It is not quick,

(defun pplusl (x y)
(cond ((null x) y)

((null y) x)
((= (caar x) (caar y))
(pcoefadd (caar x)

(future (pplus (cdar x) (cdar y)))
(future (pplusl (cdr x) (cdr y)))))

((> (caar x) (caar y))
(cons (cons (ca^r x) (cdar x)) (future (pDlusl (cdr x) y))))

(t (cons (cons (caar y) (cdar y)) (future (pplusl x (cdr y)))))))

;;; Simplify a polyncmlal

ffivivuvyvvv LWi< WM L%- L-V uv L-V: '..ry. \ lUüi'TJ';■>;■■» r-" r.An-wr_»wi—nvM-.-7.-jv-, iv v MI - .v.-j-, ,-,'v-Jif^j ^j u^j V'Jift. ui/\Ä)\^;\j\r\Ä/us._ui.rj!;ijirijinji_'-ij» nji^-i

49

psimp is Immediately strict with respect to x, but
not strict with respect to var. It is quick in
<x, (car x), (caar x)>

(defun psimp (var x)
(cond ((null x) 0)

((atom x) x)
((pzerop (caar x)) (cdar x))
(t (cons var x))))

Multiply tvo polynomials x and y
ptimes js immediately strict with respect to x, but
not strict with respect to y. It is not quick,

(defun ptimes (x y)
(cond ((or (pzerop x) (pzerop y)) 0)

((atom x) (pctlmes x y))
((atom y) (pctimes y x))
((eq (car x) (car y))
(psimp (car x) (ptimesl (cdr x) (cdr y))))

((> (got (oar x) 'ordor) (get (car y) 'order))
(psimp (car x) (pctimesl y (cdr x))))

(t (psimp (car y) (pctimesl x (cdr y))))))

ptimesl does the real work of multiplying two polynomials together.
The concept: multiplying a polynomial by a "monomial" (a+x^m) is easy.
Multiply by each of the monomials, and add it all together.

Multiply two coefficient lists
ptimes is immediately strict with respect to x,
but not strict with respect to y. It is not quick,
put futures around cons's arguments, since it is not strict

(defun ptimesl (x y)
(cond ((null x) nil)

((null y) nil)
(t (pplusl (future (do ((y y (cdr y))

(result nil))
((null y) (nreverse result))

(setq result
(cons (cons (future (pplus (caar x)

(caar y)))
(future (ptimes (cdar x)

(cdar y))))
result))))

(future (ptimesl (cdr x) y))))))

Raise polynomial p to the nth power.
pexptsq is immediately strict with respect to n, but
not strict with respect to p. It is not quick,

(defun pexptsq (p n)
(if (oddp n)

(if (= n 1)

P

ifLa-A 2J1 ILTl jL-'i J ^"_:i^vi lai W-J h

60

(ptimes p (pexptsq (future (ptimes p p)) (floor n 2))))
(if (zerop n)

1
(pexptsq (future (ptimes p p)) (floor n 2)))))

(eval-when (compile load eval)
(setf (get 'x "order) 1)
(setf (get 'y 'order) 2)
(setf (get "z 'order) 3))

C^KVW'Cf<;CüCiSBiyf^AXAXfl ^1 ■J<":
i'rU^H.■\'",■',iaiKflSA V'T.'S.VVVVVVUNVV-VVI'V JV'«QSSICK.ITKknt iO. VTH VTt W-RJTäXn* n>- r J,.■uf.PJ»/V .Vr^ i ryv-.jw.-•yvv\/ipj «-j >rv>rai

APPENDIX B

The Code

B.l. analyze.lisp

; analyze.lisp
t

; This file contains the functions for the analysis phase. It uses
; functions In utll.llsp

(In-package 'slmpl)
(use-package "flavors)
(export "(analyze))

(defvar *event-tlmes*) ;Assoclatlon list of event numbers and the time
; the event started

(defvar *lfd*) ;Current input stream
(defvar ♦ofd*) ;Current output stream
(defvar *sim*) ;The main task
(defvar *seq*) ;Sequence number, used in sorting
(defvar ^infinity* 99) ;The number of processors to allocate if an infinite

; number are requested
(defvar ^processors*) ;An array of instances of the processor flavor
(defvar +call-stack*) ;Stack of tasks called

(proclaim " (fixnum *seq* ^infinity*))

;;; Add a new event-number, start-time pair to *event-times*
(defmacro add-new-event (number base-time)

"(push (cons ,number ,base-time) *event-times*))

;;; Get the start time associated with an event number
(defmacro get-base-time (number)

' (cdr (assoc .number *event-times*)))

;;; Does an event number already have a start time stored?
(defmacro event-exists (number)

"(assoc .number *event-tlmes*))

; ;; Read something unimportant
(defmacro read-dummy ()

"(read *ifd* nil nil))

; ; ; Read another event number
(defmacro read-number ()

51

iMr*VWWiH7W^W>AK7ATJ'^^

52

'(read *ifd* nil nil))

;;; Read another task name
(defmacro read-id 0

' (read *ifd> nil nil))

;;; Read anoth r event type
(defmacro read-type ()

'(read *ifd* nil nil))

;;; Read another time
(defmacro read-time 0

' (read *ifd* nil nil))

;;; Define a "processor" to be something which has a current task
;;; vhlch it is "running", and a queue of tasks waiting to be run.
(defflavor processor
((current-task nil)
(queue nil))

0
:settable-instance-variables?

;;; Define an "event".
(defflavor event

(id
number
type
time
parent)

0
:settable-instance-variables)

;The name of the task this event affects
;Events with the same number occur at the same time

;What kind of event this was
;When it happened, relative to the parent

;Mommy!

;;; Define a "task" object
(defflavor task

((id nil)
(event-number nil)
(parent-wait 0)

(start nil)
(end nil)
(events nil)

;The task's "name"
;Its event number

;Amount of time its parent spent idle
; before this task started

;Time started
;Time finished

;List of events which happened to this
; task

(idle-time 0) ;Amount of time spent idle
(last-time-blocked nil) ;Time at which task was last stopped
(parent nil) ;Task's parent
(processor nil) ;Processor we are running on
(queue nil)) ;Queue of other tasks waiting on our

; result

0
: settable-instance-variables)

kiTRJf A.Tri J", JlAjCl 'tf. k/T/LI MjV>Ln K,T VJ\ K/\ VJI UA «JT X/IJLIKA KA KAA/V AA H/l HA KA KA XA >LA HA 5tA HA KA 1«LA JLASiAMA H A tA «A »JO Hrrün BA »A a Tl 1A Ji A * A K A K _rvv< A >.A\v»

53

The "main start" time of a task refers to the actual time it
starts in the multiprocessor environment, rather than the
relative times vhlch are stored. This time is calculated by
summing the "main start" time of the task's parent, the amount
of time the parent spent idle before this task was started,
and the time at which this task started relative to its parent's
start.

(dfifmethod (task :main-start) ()
(let ((parent (send self :parent)))

(if parent
(+ (the fixnum (send self istart))

(the fixnum (send self :parent-wait))
(the fixnum (send parent ;main-start)))

(send self :start))))

The "main end" time of a task refers to the actual time it
ends in the multiprocessor environment, rather than the
relative times which are stored. This time is calculated by
summing the "main start" time of the task's parent, the amount
of time the parent spent idle before this task was started,
and the time at which this task ended relative to its parent's
start.

(defmethod (task :main-end) ()
(+ (the fixnum (send self :end))

(the fixnum (send self :idle-time))
(the fixnum (send self :maln-start))))

Set the time this task was last blocked. This is calculated
by summing the "main start" time, the idle time, and the
current time,

(defmethod (task :set-last-time-blocked) (time)
(if time

(setq last-tirae-blocked
(+ (the fixnum (send self :main-start))

(the fixnum (send self :idle-time))
(the fixnum time)))

(setq last-time-blocked nil)))

Add some more idle time to the total already accumulated.
The 'task' argument is the task whose ending or blocking
caused the 'self' task to become active again,

(defmethod (task ;update-idle-time) (task)
(let ((last-time-active (if (send task :end)

(send task :main-end)
(send task :last-time-blocked))))

(declare (fixnum last-time-active))
(send self :set-idle-tlme

(+ (the fixnum (send self :idle-time))
(the fixnum (- last-time-active

(the fixnum (send self :last-time-blocked))))))))

i>r\i;rUKU TJV« ^ W T» «"«l/fV.nWV.JVV .TVnK* VA .I.-WAH A »n v AH A »'-.■>. r. an » r. >/-,'». A ItnH.TO^.'VJVi «inK n^n v.-, »n « n «j-r «, rv «.n «71 «r. mr*n mn m n • n -; ..r. ■.r-» ■ n *im

54

Define a macro to call the analyzer so that quoting
is not necessary. The 'ifile' argument should be a
file previously created by the 'sim' function. If
not specified, 'ofile' will default to the current
standard output, and 'nprocs' vill default to "infinity"
(vhich is 99 — this is not a very big universe)
Example: (analyze sirn.results sim.plot 3)

(defmacro analyze (ifile ^optional (ofile *standard-output*)
(nprocs ♦infinity*))

'(analyze-func ',ifile ',ofile ,nprocs))

Invoked to analyze an entire simulation. It Initializes
global variables, creates the processors, and calls the
functions which do the analysis. Not meant to be called
directly, but it won't hurt anything if you do.

(defun analyze-func (ifile ofile nprocs)
(declare (special nprocs))
(declare (fixnum nprocs))
(if (<= nprocs 0)

(error "Must have more than 0 processors!"))
(setq *processors+ (make-array nprocs)

♦event-times* nil
sim nil
call-stack nil
seq 0)

(dotimes (i nprocs) (setf (aref *processors* i) (make-instance 'processor)))
(with-open-file (*ifd* ifile direction :input)

(analyze-buildtree nil 0))
(send (aref *processors* 0) :set-current-task *sim*)
(send *slm* :set-processor (aref *processors* 0))
; Get the next event from each processor, and choose the one which would
; occur first
(let ((tfile (format nil ""A.-D.TMP" ifile nprocs)))

(with-open-file (*ofd* tfile :direction :output)
(log-event 0 (send *sim* :id) 'begin-sim 0)
(do ((pair (choose-next-task) (choose-next-task)))

((null pair))
(if (car pair) (apply #'do-event pair))))

(sortfile tfile tfile)
(with-open-file (*lfd* tfile idirection :input)

(with-open-file (*ofd* ofile :direction :output)
(analyze-output)))))

Invoked when a new task is begun. Returns the
end time of the task. It builds a tree with
the main process as the root, and its subprocesses
branches.

(defun analyze-buildtree (oid base-time)
(declare (fixnum base-time))
(do ((number (read-number) (read-number))

(id (read-id) (read-id))

<7tvxvm>.v> v>>>,v> vx*>)<>;>^^

55

(type (read-type) (read-type))
(time (read-time) (read-time))
(offset 0))

(Ceq oid id)
(If id (create-event number id type (- time base-time offset)))
time)

(declare (fixnum number time offset))
(case type

((begin-exec)
(cond ((event-exists number)

(create-event number
id
type
(get-base-time number)))
(- (the fixnum (get-base-time number))

base-time)))
(t
(add-new-event number (- time base-time offset))
(create-event number id type (- time base-time offset))))

(setq offset
(+ offset
(the fixnum

(- (the fixnum (analyze-buildtree id time))
time)))))

((begin-sim value-needed end-sim)
(if (eq type "begin-sim)

(setq base-time time))
(create-event number id type (- time base-time offset)))

(t nil)))) ; do nothing if not one of the above types

This function takes the information produced by 'analyze-buildtree'
and converts it to x-y pairs, with x being time and y being
the number of processors in use. It writes this information to
the output file specified in the call to 'analyze',

(defun analyze-output 0
(declare (special nprocs))
(do ((last-x -1 x)

(max-y 0)
(area 0)
(number (read-number) (read-number))
(id (read-id) (read-id))
(type (read-type) (read-type))
(x (read-time) (read-time))
(dummy (read^dummy) (read-dummy))
(y 0))

((null x)
(format *ofd* "~D ~D~%" last-x 0)
(format +ofd* "; Maximum of ~D processor":? in use~%" max-y)
(format *ofd* "; Processor time used: ~D~%" area)
(if (not (= nprocs ^infinity*))

(setq max-y nprocs))

O/ JT^T-fJSf ■fStfJ J'S-fSiPS JJ'J"SsTJ-IJ1 TJVJ'J'J'r*r\/\TJ\r*J\rj\J\^J\J'SJ^SJlJ\,Krjy:r^:!\Mrj^rj\ -u" rL» rj\-j» r>. r_>. ** n>,rjt^> HX-TLAAJI r^n. n-aru«ru>i ru>,njrnjfTui.'njii

5G

(format ♦ofd*
'; Total processor time available: ~D~%" (* last-x max-y))

(format *ofd*
"; Percentage used: ",2F"%" (/ (float (* 100 area))

(float (* last-x max-y)))))
(declare (fixnum x y last-x max-y area))
(declare (ignore number dummy))
(cond ((= x last-x)

(case type
((begin-sim begin-exec restarted)
(incf y))

((end-sim end-exec blocked)
(decf y))))

(t
(case type

((begin-exec restarted)
(format *ofd* ""D ~D~%' last-x y)
(format *ofd* "~D ~D"%" x y)
(Incf area (the fixnum (* y (the fixnum (- x last-x)))))
(setq max-y (max y max-y))
(incf y)) "

((end-exec blocked)
(format *ofd* "~D -D~%" last-x y)
(format *ofd* "~D "D~%" x y)
(incf area (the fixnum (* y (the fixnum (- x last-x)))))
(setq max-y (max y max-y))
(decf y))

((begin-sim)
(incf y)
(setq max-y y)
(format *ofd* ""D "D-??" x 0))

((end-sim)
(format *ofd* U~D "0"%" last-x y)
(format *ofd* "~D ~D~%" x y)
(incf area (the fixnum (* y (the fixnum (- x last-x)))))
(setq max-y (max y max-y))
(decf y))

(t
(setq x last-x)))))))

Create an event instance, and also a new task if warranted
by the type of event. Stuff the result in the process tree
being built by analyze-buildtree.

(defun create-event (number id type time)
(declare (fixnum number time))
(case type

((begin-sim)
(set id (make-instance 'task :id id :event-number number :start time))
(setq *sim* (symbol-value id))
(push '*sim* *call-stack*))

((begin-exec)

fJj'~Jj-/'.'J':'SJf..'S'VJ'S'J'. iV ^■-"T-i'-iV «"^d.^^isarf'v XVfTVTTVTVmLnxflV ViäilSi.JI-ktA iCT>i.i/LrMLnn.n»»jiA_T7ViÄ/ijvifliLÄ/Lnju-j UMoaamavHtuMuarinrOTi-iniv-si m

57

(let* ((parent (symbol-value (car *call-stack*)))
(events (send parent :events))
(me (make-instance 'task

:id id
:event-number number
:start time
:parent parent))

(newevent (make-Instance 'event
:parent parent
:number number
:id id
:type type
:time time)))

(set id me)
(send parent :set-events (nconc events (list newevent)))
(push id *call-stack;*)))

((end-exec end-sim value-needed)
(let* ((parent (symbol-value (car *call-staclc*)))

(events (send parent :events))
(newevent (make-instance 'event

:parent parent
:number number
:ld id
:type type
:time time)))

(send parent :set-events (nconc events (list newevent)))
(if (not (eq type "value-needed))

(pop *call-stack*))))
(t (error "ERROR: got ~D ~S "S in create-event"%" number id type))))

Choose one of the events returned by get-next-tasks as the
next one to execute. This is done by figuring out when each
would occur in real time and choosing the one which would occur
first.

(defun choose-next-task 0
(car (sort (get-next-tasks)

#'<
:key #'(lambda (x)

(let ((event (car x))
(parent (send (car x) :parent)))

(+ (the fixnum (send event :time))
(the fixnum (send parent :main-start))
(the fixnum (send parent :idle-time))))))))

;;; Return a list of consisting of the next event
;;; which would occur in each active process,
(defun get-next-tacks ()

(declare (special nprocs))
(do ((i 0 (1+ i))

(result nil))
((>= i nprocs) result)

:^vVi>^>\w>aftv^w^^

(declare (flxnum 1))
(let* ((thls-processor (aref tprocessors* i))

(current-taslc (send this-processor :current-task))
(event (If current-task (first (send current-task :events)))))

(If (and current-task event)
(setq result (cons (list event this-processor) result))))))

Take an event, plus the current processor, and make the
changes which vould result from the occurence of the
event.

(defun do-event (next-event processor)
(declare (special nprocs))
(let* ((current-task (send processor :current-task))

(events (send current-task : events))
(number (send next-event :number))
(id (send next-event :id))
(type (send next-event :type))
(time (send next-event :time)))

(declare (fixnum number time))
(case type

((begin-exec)
(do ((i 0 (1+ i))

(found nil))
((or found (>= i nprocs))
(cond ((not found)

(send processor
:set-queue (cons current-task

(send processor :queue)))
(send current-task :set-last-time-blocked time)
(send current-task :set-processor nil)
(send (symbol-value id)

:set-parent-vait (send current-task :idle-time))
(log-event '-

(send current-task :id)
'blocked
(send current-task :last-time-blocked))

(send processor :set-current-task (symbol-value id))
(send (symbol-value id) :set-processor processor))))

(declare (fixnum i))
(let ((proc (aref ^processors* i)))

(cond ((not (send proc :current-task))
(send proc :set-current-task (symbol-value id))
(send (symbol-value id) :set-processor proc)
(send (symbol-value id)

;set-parent-vait (send current-task :idle-time))
(setq found t)))))

(log-event number Id type (send (symbol-value id) ;main-start))
(send current-task :set-events (cdr events)))

((end-exec end-sim); We're finished
; Set the ending time of this task, adding in the wait time
'send current-task :set-end time)

C'^^^f A^^^tvT^Ato^V^^ HA Vi .HAHAKn >^KA H^XT K-AXl .vl .-O .-Ö ■JJUiJXhJVtS'. V..-, ,-.\ r JV:..A WAS* X A .O >-1 iT K.A KnS

59

; This task is no longer running on any processor
(send current-task :set-processor nil)
; Print self
(log-event '- id type (send current-task :niain-end))
; Pop the event queue
(send current-task :set-events (cdr events))
; Empty the processor
(send processor :set-current-task nil)
; Activate any tasks that might have been waiting for a value from
; this task
(activate-future-queue current-task processor)
; If there weren't any, get one from one of the processor queues
(if (null (send processor :current-task))

(send processor
;set-current-task (get-idle-task processor

current-task)))
; If we found one, tell it where it's running
(cond ((send processor :current-task)

(send (send processor :current-task) :set-processor processor))))
((blocked-on-value)
(let ((my-main-time (+ time

(the fixnum (send current-task :idle-time))
(the fixnum (send current-task :main-start))))

(its-end-time (if (send (symbol-value id) :end)
(send (symbol-value id) :main-end))))

(declare (fixnum my-main-time its-end-time))
(cond (its-end-time

(cond ((<= its-end-time my-main-time)
(log-event '- id "value-received my-main-time))

(t
(log-event
'- id 'value-received
(+ time

(the fixnum (send current-task :idle-time))
(the fixnum (send current-task :main-start))
(the fixnum (- its-end-time my-main-time))))

(send current-task
:set-idle-time
(+ (the fixnum (- its-end-time my-main-time))
(the fixnum (send current-task

:idle-time))))))
(send current-task :set-events (cdr events)))
(t
(let ((proc (send current-task :processor)))

(send (symbol-value id)
:set~queue (cons current-task

(send (symbol-value id) :queue)))
(send current-task :set-last-time-blocked time)
(log-event '-

(send current-task :id)
'blocked

/> -v" O -'./'. .-J.,"\f7\W ><.■*>■ J"^.^ T rJVKJ\)'J\ •^^^■^K^^HJ^yI\wr^WRJ\/^*,■\rv\|\J^w*J-i'<J^*-^w 'V(JsnÄj-\JWis\,-\>vm^i(VT/V'.-w.r%nrw-i%;' 'v\»vn^.-ifviÄivwM»vi>v"rwij

60

(send current-task :last-time-blocked))
(send current-task :set-processor nil)
(send proc :set-current-t£>sk

(get-any-idle-task current-task))
(if (send proc :current-task)

(send (send proc :current-task)
;set-processor proc)))))))

((value-needed)
(let ((my-maln-time (+ time

(the fixnum (send current-task lidle-time))
(the fixnum (send current-task :main-start))))

(its-end-time (if (send (symbol-value id) :end)
(send (symbol-value id) :main-end))))

(declare (fixnum my-main-timo its-end-time))
(log-event number id type my-main-time)
(cond (its-end-time

(cond ((<= its-end-time my-main-time)
(log-event '- id 'value-received my-main-time))

(t
(log-event
'- id 'value-received
(+ time

(the fixnum (send current-task :idle-time))
(the fixnum (send current-task :main-start))
(the fixnum (- its-end-time my-main-time))))

(send current-task
:set-idle-time
(+ (the fixnum (- its-end-time my-main-time))
(the fixnum (send current-task

: idle-time))))))
(send current-task :set-events (cdr events)))
(t
(let ((proc (send current-task processor)))

(log-event '- (send current-task :id) 'blocked my-main-time)
(send (symbol-value id)

:set-queue (cons current-task
(send (symbol-value id) :queue)))

(send current-task :set-last-time-blocked time)
(send next-event :set-type "blocked-on-value)
(send current-task :set-processor nil)
(send proc :set-current-task

(get-any-idle-task current-task))
(if (send proc :current-task)

(send (send proc :current-task)
:set-processor proc)))))))

(t (error "ERROR: got ~D ~S ~S in do-even--"%" number id type)))))

Activate as many tasks as possible from the queue waiting for
a particular future (specified by the 'task' argument) to be
determined. Push the rest onto the queue of the argument processor,

(defun activate-future-queue (task processor)

v ttn u nn n * nu n u - k ■ u- n M r i s i: w k. f t ^ >-' n. i- R_* JLJUA i±*~u.-jt-i.

Gl

(declare (special nprocs))
(do ((1 0 (1+ i))

(done nil))
((or done (>= i nprocs)))

(declare (fixnum i))
(let* ((proc (aref *processors* 1))

(current-taslc (send proc : current-task)))
(cond ((null current-task)

(let* ((q (send task :queue))
(newtask (car q)))

(cond (newtask
(send proc :set-current-task newtask)
(send newtask :set-processor proc)
(send newtask :update-idle-time task)
(send newtask :set-last-time-blocked nil)
(log-event '-

(send newtask :id)
'restarted
(send task :main-end))

(send task :set-queue (cdr q)))
(t
(setq done t))))))))

;; If there are any tasks left in the queue, stick them on the
;; current processor's queue,
(cond ((send task :queue)

(send processor
:set-queue (nconc (send task :queue)

(send processor :queue)))
(send task :se:.-queue nil))))

Pop an idle task off a particular processor's queue.
If the queue is empty, get a task from some other
processor's queue. The 'oldtask' argument is passed in
order to access its end time, which is used as the new
task's start time,

(defun get-idle-task (proc oldtask)
(let* ((q (send proc :queue))

(newtask (car q)))
(cond (q

(send proc :set-queue (cdr q))
(send newtask :update-idle-time oldtask)
(log-event '- (send newtask :id) 'restarted

(if (send oldtask :end)
(send oldtask :main-end)
(send oldtask :last-time-blocked)))

(send newtask :set-last-time-blocked nil)
newtask)
(t
(get-any-idJ.e--:ask oldtask)))))

;;; Pop an idle task off some processor's queue. Return nil if

•^y^^^^^^c^jftc^^^

62

; all queues are empty. The 'oldtask' argument is passed in
; order to access its end time, which is used as the nev
; task's start time,

(defun get-any-idle-task (oldtask)
(declare (special nprocs))
(do* ((i 0 (1+ D)

(newtask nil))
((or newtask (>= i nprocs)) newtask)

(declare (fixnum i))
(let* ((proc (aref *processors* D)

(q (send proc :queue)))
(cond (q

(setq newtask (car q))
(send newtask :update-idle-time oldtask)
(send newtask :set-last-tlnie-blocked nil)
(log-event '-

(send newtask :id)
"restarted
(if (send oldtask :end)

(send oldtask :main-end)
(send oldtask :last-time-blocked)))

(send proc :set-queue (cdr q)))))))

Log some info about an event: the event number, its name,
its type, when it occurred, and a sequence number to keep
it in the proper order after sorting, times being equal,

(defun log-event (number id type time)
(declare (fixnum number time))
(format *ofd* "~D ~S ~S ~D ~D~%" number id type time (incf *seq*)))

B.2. ehook.IIsp

; ehook.lisp

; This file contains the functions which are required for
; use of the *evalhook* mechanism. It uses functions defined
; in util.lisp

(in-package "simpl)
(export '(future delay pcall touch))

(defvar *depth-stack*) ;A stack whose first element is the
; current depth inside an expression

(defvar *total-delays*) ;The total number of delays created so far.
(defvar *uncomputed-delays*) ;The number of delays whose values have not

; yet been required.
(defvar *total-futures*) ;The total number of futures created so far,
(defvar *unneeded-futures*) ;The number of futures whose values have not

; yet been required.

J. XVJCjL.-TiL-ri.^ JJCJX ^rt^iL-l^n jtn ■< • v I « n iitlir-i v I n r MA J>_-I rLr.tuiA.-».-, üJ-IäA A-'IA. A/V\ /U UV \rj tru

G3

(defvar *call-stack*) ;A stack of the function names called
(defvar »event-level*) ;A stack of the current event number
(defvar *future-levels*) ;An association list of event numbers, and an

; atom which shows whether the last expression
; at that level was a future or not.

(proclaim '(fixnum *total-delays*
»uncomputed-d elays*
total-futures
unnceded-futures))

Check to see if a function is strict by looking for the
atom 'strict' on its property list. Strict functions
are defined in sim.lisp

(defmacro strlct-p (f)
'(get .f "strict))

;; Check to see if a object is a symbol representing
;; a future by looking for the atom 'future' on its
;; property list,

(defmacro future-p (x)
'(and (symbolp ,x)

(get ,x 'future)))

Check to see if a object is a symbol representing
a delay by looking for the atom 'delay' on its
property list,

(defmacro delay-p (x)
'(and (symbolp ,x)

(get ,x 'delay)))

Define a structure to contain the closure created for a
delay. The purpose of defining the structure is merely
fcr ease of identification of a delay,

(defstruct (delay-struct (:conc-name delay-))
closure)

Expects a symbol whose value Is a delay structure, or the
value resulting from its previous computation. Returns
'..hat value, or computes it if necessary. A side effect is
that the symbol's value will be set to the result,

(defun do-delay (expr)
(cond ((delay-struct-p (symbol-value expr))

(decf *uncomputed-delays*)
(logmsg (next-event) expr 'begin-delay)
(set expr (funcall (delay-closure (symbol-value expr))))
(logmsg nil expr 'end-delay)
(symbol-value expr))

(t
(logmsg (next-event) expr 'already-computed)
(symbol-value expr))))

JWKWVJBnWtlBVWV tVO ^-V}<_'iiJ^;:> ^XU^a>O^H\i)rJ.WAJ«A;vll^^U!l'JW^JV'"^IVVV^ruvrvv^^Vi■^.r^A/^^r^^iw. ■■jt rutrv» ,- ,. ns rvurrLV-r k-n u -, i. -■--'. : u >. c n ^ M u->.. L ■■ u-» LT» in

61

Expects a symbol whose value is the result of a future.
If this is the first time it has been requested, the
'determined' property is set to TRUE.
Returns the value, or if the value turns out to be a future

also, recurses.
(defun do-future (f)

(cond ((not (get f 'determined))
(setf (get f 'determined) t)
(decf tunneeded-futures*)))

(logmsg (next-event) f 'value-necdod)
; Recursively check the value to see if it also is a future,
(let ((fl (symbol-value f)))

(if (future-p fl)
(do-future fl)

fl)))

This is the function which gets control of the evaluation process
from eval, using the *evalhook* variable. It takes a form to
evaluate, plus an optional environment, which is used by Common
LISP in determining bindings. It returns the result of evaluating
the form,

(defun ehook (form ^optional env)
(push (1+ (the fixnum (car *depth-stack*))) *depth-stack*)
(let* ((depth (car *depth-stack*))

(future-level (assoc depth *future-levels*))
(values nil))

; Do the bookkeeping stuff to assure that we know what the last
; expression seen at this level was.
(cond ((and (listp form) (eq 'future (car form)))

(cond ((eq 'future (caddr future-level))
(setq *event-level*

(member (cadr future-level) *event-level*)))
(t
(push (next-event) *event-level*)
(push (list depth (car *event-level*) 'future)

future-levels))))
(t
(push (list depth (car *event-level*) "non-future)

future-levels)))
; Check to see what type 'form' is.
(cond ((listp form)

; It's a list — must be a parallel construct or a
; function call
(case (car form)

(future
(let ((sym (gentemp "future" *simpl-package*)))
(setf (get sym 'future) t)
(incf *total-futures*)
(incf *unneeded-futures*)
(logmsg (car *event-level*) sym 'begin-exec)
(set sym (ehook (cadr form) env))

ä;^ä.U^ ü..'U_ä - ."..^J

65

(logmsg nil syra 'end-exec)
; If we know the outer function is strict, better
; return the real value instead of the future symbol.
; Hopefully no one would create a future in this
; position anyway,
(if (strict-p (car *call-stack*))

(setq values (do-future sym))
(setq values sym))))

(delay
(let ((sym (gentemp "delay" *slmpl-package*)))

(setf (get sym 'delay) t)
(incf *uncomputed-delays*)
(incf ttotal-delays*)
;; Create a list of the atoms in 'form', so that
;; a closure can be made of their bindings
(set sym

(make-delay-struct
:closure (ehook '(function

(lambda ()
(let ((*evalhook* 'ehook))

,(cadr form))))
env)))

(logmsg (next-event) sym 'created)
; If we know the outer function is strict, better
; return the real value instead of the delay symbol,
(if (strict-p (car *call-stack*))

(setq values (do-delay sym))
(setq values sym))))

(pcall
(do ((elements (cdr form) (cdr elements))

(newfunc nil)
(newargs nil))

((null elements) (setq values (apply newfunc newargs)))
(let ((sym (gentemp 'future' *simpl-package*)))

(setf (get sym "future) t)
(logmsg (car *event-level*) sym 'begin-exec)
(set sym (ehook (car elements) env))
(logmsg nil sym 'end-exec)
(if (eq (car elements) (cadr form))

(setq newfunc (symbol-value sym))
(setq newargs

(append newargs (list (symbol-value sym))))))))
(touch
(setq values (ehook (cadr form) env))
(if (delay-p values)

(setq values (do-delay values)))
(if (future-p values)

(setq values (do-future values))))
(t

; It must be a regular function call,
(push (car form) *call-stack*)

H\y<i\i\\K\^\K^K\fii\wiwyj\)ww*j\^^

66

(setq values (evalhook form #'ehoolc nil env))
(setq *call-Etack*

(cdr (member (car form) tcall-stack* :test #'equal)))
(if (and (delay-p values)

(strlct-p (car *call-staclc*)))
(setq values (do-delay values)))

(if (and (future-p values)
(strict-p (car *call-stack*)))

(setq values (do-future values))))))
If we're evaluating an argument to a strict function,
and it's a delay or future symbol, better return the
real value,

((and (delay-p form) (strict-p (car *call-stack*)))
(setq values (do-delay form)))

((and (future-p form) (strict-p (car *call-stack*)))
(setq values (do-future form)))

; Just an ordinary variable,
(t
(setq values (evalhook form #'ehook nil env))
(if (and (delay-p values)

(strict-p (car *call-stack*)))
(setq values (do-delay values)))

(If (and (future-p values)
(strict-p (car *call-stack*)))

(setq values (do-future values)))))
(setq *future-levels*

(member depth *future-levels*
:test #'(lambda (x y) (equal x (car y)))))

(pop *depth-stack*)
values))

B.3. main.lisp

(in-package 'simpl)

(setq *simpl-package* ♦package*)

(cond ((member :excl *features*) (setq *lisp-type* :excl))
((member :lucid ♦features*) (setq *lisp-type* -.lucid))
((member 'common *features*) (setq *lisp-type* :common-lisp))
((member :common ^features*) (setq +llsp-type* :common-lisp))
((member :common-lisp ♦features*) (setq ♦lisp-type^ :common-lisp))
(t (error "What kind of lisp is this, anyvay?")))

(case ♦lisp-type^
((:excl)
(use-package 'excl))

(t
(use-package "system)))

,v\,^^'A/.a'virw-\:vLvv%rvo<«iw»:tfHu^k,r>ir^^^^

67

(load "utll")
(load "ehoolc")
(load "sim")
(load "analyze")

B.4. sim.lisp

sim.lisp

This file contains the functions for the simulation phase.
It uses functions defined in util.lisp.

(in-package 'simpl)
(export '(sim))

;;; Mark certain functions as "strict". Only a useful subset of the
;;; strict functions in Common LISP are included here,
(eval-vhen (load eval)

(mapc #'(lambda (x)
(setf (get x 'strict) t))

' (llstp not null if cond get atom numberp zerop
+ - * = eq equal eql
><>=<= 1+ 1- and or car cdr caar cadr
caadr caaar cadar caddr
cdar cddr cdaar cdadr cddar cdddr pprint
print prlnc prini write write-to-string
prini-to-string princ-to-string write-char
write-string vrite-line vrite-byte format oddp evenp)))

Define a macro to call the simulator so that quoting
is not necessary. The first argument must be the form
to be evaluated. The second argument is the name of the
file to write to. If not specified, it defaults to
whatever is currently defined as standard output.

.. Example: (sim (quicksort "(2 1)) results.dat)
(defmacro sim (form &optional (ofile *standard-output*))

(with-open-file (*ofd* ",ofile :direction :output)
(sim-func '.form)))

This function is the real simulator. It takes only the
form to be evaluated. It Initializes global variables,
turns off garbage collection, and sets up the "evalhook"
mechanism. It then evaluates the form, turns on garbage
collection, and logs pertinent information. It returns
the result stripped of all futures and delays,

(defun sim-func (form)
(let ((val nil)

(syml (gentemp "sim" *simpl-package*)))
;; Initialize important globals.

lVl,V^"»1.n."\:^'_\."VK:i>*_:"VXAH-1^i3>L,"VV-1XAX_1x A VJI w .n ii^-VRj^-il_jT-u .1 V KV(«|'U_M:UJ* um_r MTO irv wii K U jru WVJ MTJMIJ MSJ^T^I t

68

(setq *total-delays* 0
♦uncomputed-delays* 0
total-futures 0
unneeded-futures 0
♦call-stack* nil
♦ depth-stack* * (0)
♦event-level* '(0)
future-levels nil
max-Gvent 0)

Do a garbage collection, then turn it off if ve know how.
This allows consistency when the programs are run many
times,

(gc)
#+lucid (gc-off)
;; Write out the form we are evaluating, just for the record,

(format *ofd* "; ~S~%" form)
;; Log the fact that the simulation is beginning,
(logmsg *max-event* syml "begin-sim)
;; Turn on the evaluation hook which allows us to capture control
;; from eval, and evaluate the form,
(let ((*evalhook* 'ehook))

(setq val (eval form)))
;; Log the fact that the simulation has ended,
(logmsg nil syml "end-sim)
;; Turn garbage collection on again.
#+lucid (gc-on)
;; Build up a tree containing no futures or delays, so we can
;; print it out as the 'answer',
(setq val (build-it val))
;; Log a bunch of stuff,
(format *ofd*

"; -S-%" val)
(format *ofd*

"; ~D total futures, ~D futures computed but not needed~%"
total-futures *unneeded-futures*)

(format *ofd*
"; ~D total delays, ~D delays not computed"??"
total-delays *uncomputed-delays*)

;; Return the value.
val))

;;; Go through a tree which may contain futures or delays and
;;; substitute their values,
(defun build-it (x)

(cond ((future-p x) (build-it (symbol-value x)))
((delay-p x) (build-it (symbol-value x)))
((consp x) (cons (build-it (car x))

(build-it (cdr x))))
(t x)))

affiüQUGuoagufflsygjE&Ka

69

B.5. utll.llsp

; utll.llsp

; This file contains some utility functions shared by other parts
; of the system.

(ln-package 'slmpl)

(defvar *max-event+) ; The highest event number used so far

(proclaim ' (fIxnum *max-event*))

;;; Choose the function to use for timing
(eval-when (compile eval)

(case *llsp-type*
((:lucid :excl :common-lisp)
(defmacro cputlme () '(get-lnternal-run-time)))

(t
(defmacro cputlme () "(error "Cannot get cpu time.")))))

;;; Generate the next higher event number
(defun next-event ()

(incf *max-event*))

Write out a message giving the event number, the name of
the task, the type of event, and the time at which it
occurred. If the event number is nil (meaning it is related
to some other event), write '- instead,

(defun logmsg (event-number id type)
(if event-number

(format *ofd* "~D ~S ~S ~S~%" event-number id type (cputlme))
(format *ofd* "- ~S ~S "S~%" id type (cputlme))))

;;; Flatten a tree into a list.
(defun flatten (1)

(cond ((null 1) 1)
((atom (car 1)) (cons (car 1) (flatten (cdr 1))))
(t (append (flatten (car 1)) (flatten (cdr 1))))))

;;; Use the UNIX sort utility to sort a file by the 4th and 5th fields,
;;; which should be integers,
(defun sortflle (Iflle oflle)

(case *llsp-type*
((:excl)
(run-shell-command
(format nil "sort +3n +4n -o ~A "A" oflle Iflle)))

((:lucid)
(run-unix-program
"sort" arguments (list "+3n" "+4n" "-o" oflle ifile)))

(t

K^.AJlAn.'AA/Vftrj^ra/vuvi/st \r* >./v \ra ya v^ v^ u n ^ y» u y.x .-. M w> nM TJI r.w r^-.» ^jrjif^jnjjrjn;x.i^ -s\f^r\ rf^\ .»..^ An u >.J', M. ^ u A'U a

70

(error "Cannot sort file — no way to run a subshell"))))

.fy VrKLn* L.^' UV V/VI/VV.
-
* _V U*V V-^A 'V\r»ivri;'l/Vvrv,l-,V- in/ivv-\.^l ?v\-«v\ AJT XJl Ä-n Jtn *^r\ j^.n A._n M n M.A n M »I * n-n ^-J

References

[l] Hal Abclson, Norman Adams, David Bartley, Gary Brooks, William Clinger, Dan
Friedman, Robert Halstcad, Chris Hanson, Chris Hayncs, Eugene Kohlbecker, Don
Oxley, Kent Pitman, Jonathan Rees, Bill Rozas, Gerald Jay Sussman and Mitchell
Wand.
William Clinger, editor.
The Revised Revised Report on Scheme or an UnCommon Lisp.
Artificial Intelligence Memo 818, MIT Artificial Intelligence Laboratory, Cambridge,
MA, August 1985.

[2] David Billstrom, Joseph Brandenburg and John Teeter.
CCLISP on the iPSC Concurrent Computer.
Intel Scientific Computers, Beaverton, OR, 1987.

[3] Melvin E. Conway.
Design of a Simple Transition-Diagram Compiler.
Communicationa of the ACM, VI(7):396-408) July 19G3.

[1] Richard P. Gabriel.
Performance and Evaluation of Lisp Systems.
MIT Press, Cambridge, MA, 1985.

[5] Richard P. Gabriel and John McCarthy.
Queue-based Multi-processing Lisp.
ACAf Symposium on LISP and Functional Programming, pages 25-43, ACM, August
1984.

[0] Sharon L. Gray.
Using Putt res to Exploit Parallelism in Lisp.
Master's Thesis, Department of Electrical Engineering and Computer Science, MIT,
February 198G.

[7] Robert H. Halstead, Jr.
Parallel Computing Using Multilisp.
MIT Laboratory for Computer Science, Cambridge, MA, IG December 1986.

[8] Robert H. Halstead, Jr.
Multilisp: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programming Languages and Systems, VII(4):501-538, October
1985.

[9] C. A. R. Hoare.
Parallel Programming: An Axiomatic Approach.
pp. 11-42 in Language Hierarchies and Interfaces, F. L. Bauer and K. Samelson,
editors.
Springer-Verlag, New York, NY, 1976.

[10] P. Knueven, P. G. Hibbard and B. W. Leverett.
A Language System for a Multiprocessor Environment.
Robert B. K. Dewar, editor. International Conference on the Design and
Implementation of Algorithmic Languages, pages 262-274, Courant Institute of

71

/•»■nj'rTJ w irv-r-vj V-VJWIJ wvi-wv *-• *\J ■*-.- ■* v ■» ■ ■ *i^irmj-m<matmm*m\i'*-*j m-v-tir-v-,

72

Mathematical Sciences, June 1976.

[11| Jed Marti and John Fitch
The Bath Concurrent LISP Machine.
J. A. van Hulzen, editor. Proceedings of EVROC AL 'S3, pages 78-90, Springer-Verlag,
March 1983.

[12] Patrick F. McGehearty and Edward J. Krall.
Potentials for Parallel Execution of Common Lisp Programs.
Kai Hwang, Steven M. Jacobs and Earl E. Swartzlander, editors. Proceedings of the
19S6 International Conference on Parallel Processing, pages G90-7t)2, IEEE Computer
Society Press, August 1980.

[13] Curtis Alan Scott, Don Allen, Laura Bagnall, Jim Miller and Scth Steinberg.
Butterfly LISl' Reference Manual.
BON Laboratories Inc., April 198C.

[ll] Shigeo Sugimoto, Kiyoshi Agusa, Koichi Tabata and Yutaka Ohno.
A Multi-microprocessor System for Concurrent LISP.
Proceedings of the 19SS International Conference on Parallel Processing, pages 135-
113, IEEE Computer Society Press, June 1983.

[15] Stephen Michael Watt.
Bounded Parallelism in Computer Algebra.
Research Report CS-8C-12, University of Waterloo, Waterloo, Ontario, Canada, May
1980.

[10] Benjamin Zorn, Paul Hilfinger, Kinson Ho, James Larus and Luigi Semenzato.
Features for Multiprocessing in SPUR Lisp.
University of California at Berkeley, in preparation, 20 September 1980.

'f'K-iXn ■<'r'fäY'~-iijßi„i'rKrY~^'*''*''i'Mn-4''.^'< vA.OV--\)>,--K.1i<.",K^^n.'V1^.-\rw-i/vuv.A?iVyvvrwu-< IBBMBMaaaauaüatgMmJcnJi]M r.*rjM-nr^M:-s\r^.,:i-,iv.,w^,r.,r

